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Comment 2

We are interested in algebraic structures that support both addition and
multiplication.

Typical examples in classical algebra are integers, rationals, reals, complexes,
and are referred to as rings and fields.

In the computational universe one often encounters similar but weaker
structures. Hence, it is a good idea to start at a class of structures that are
somewhat more general, and then home in on rings and fields later.



Semirings 3

A semiring is a structure ⟨X; ⊕, ⊗, 0, 1⟩ that satisfies the following conditions:

1. ⟨X; ⊕, 0⟩ and ⟨X; ⊗, 1⟩ are monoids, the former is commutative.

2. Operation ⊗ distributes over ⊕ on the left and right:
x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z) and
(y ⊕ z) ⊗ x = (y ⊗ x) ⊕ (z ⊗ x).

3. 0 is a null (or annihilator) with respect to ⊗: x ⊗ 0 = 0 ⊗ x = 0.

A semiring is commutative if x ⊗ y = y ⊗ x and idempotent if x ⊕ x = x.



Examples 4

All the standard examples (integers, rationals, reals, complexes) are semirings.

The Boolean semiring has the form B = ⟨{0, 1}; ∨, ∧, 0, 1⟩ where the
operations are logical ’or’ and ’and’.

The relation semiring has as carrier set all binary relations over some set A, set
union as the additive operation, and relational composition as the multiplicative
operation. 0 is the empty relation, and 1 is the identity relation.

RA = ⟨RelA; ∪, ◦, ∅, IA⟩



Language Semiring 5

The language semiring over some alphabet Σ has the form

L(Σ) = ⟨P(Σ⋆); ∪, ·, ∅, ε⟩

It is easy to check that all the equations for a semiring are satisfied by L(Σ).
Similarly one can restrict the languages to be, say, regular or context-free and
so on.

One can even introduce a metric on L(Σ) by setting dist(L, K) := 2−n where
n is minimal such that L ∩ Σn ̸= K ∩ Σn for L ̸= K and dist(L, L) = 0.
It is not hard to see that L(Σ) is a complete metric space with respect to this
distance function.



Tropical Semiring 6

The tropical semiring is defined by

TS = ⟨N∞; min, +, ∞, 0⟩

Here ∞ is an “infinitely large” element that is adjoined to N and that behaves
properly with respect to min and +. E.g., min(x, ∞) = x and x + ∞ = ∞.

Dijkstra’s famous algorithm for minimal cost paths operates in this semiring.



Matrix Semirings 7

Suppose we have a semiring S = ⟨S; ⊕, ⊗, 0, 1⟩.

The matrix semiring over S has the form

Sn,n = ⟨Sn,n; ⊕, ⊗, 0, 1⟩

where ⊕ and ⊗ are the matrix operations that are directly obtained from S; 0
and 1 are the appropriate null and identity matrices over S.

One can show that Sn,n is again a semiring.



Star Semirings 8

Consider again the language semiring L(Σ) of all languages over Σ. The
multiplicative operation here is concatenation of languages.

There is another critical operation on languages, Kleene star x⋆, a sort of
infinite sum of products of arbitrary length:

x⋆ =
∑
i≥0

xi = x0 + x1 + x2 + . . . + xn + . . .

This also makes sens e.g. in the relation semiring: in this case, reflexive
transitive closure plays the role of Kleene star.

The star operation is useful since it makes it possible to solve linear equations
of the form x = a · x + b: the solution is a⋆b.



Closed Semirings 9

Suppose S is an idempotent semiring. To define Kleene star, we need an
infinitary operation

∑
i∈I

ai where (ai | i ∈ I) is any family of elements in S, I
an arbitrary index set.

S is a closed semiring iff: ∑
i∈[n]

ai = a1 + . . . + an

(∑
i∈I

ai

)(∑
j∈J

bj

)
=

∑
(i,j)∈I×J

aibj

∑
i∈I

ai =
∑
j∈J

(∑
i∈Ij

ai

)
In the last equation I is the disjoint union of the sets Ij . These conditions are
really all sanity checks.



Consequences 10

The star operation in a closed semiring is then defined as above. We can then
verify somehat strange equations such as

(x + y)∗ = (x∗y)∗x∗

(xy)∗ = 1 + x(yx)∗y

Overall, trying to axiomatize these structures is quite difficult, much harder
than the classical examples from algebra.

At any rate, one can check that L(Σ) is in fact a closed semiring, as is R.

In these examples we also have the super idempotency property:
∑

ai = a if
for all i ∈ I: ai = a.
It follows that (x∗)∗ = x∗ and 1∗ = 1.



Rings 11

Definition
A ring is a semiring

R = ⟨R; +, ·, 0, 1⟩

where
⟨R; +, 0⟩ is a commutative group (additive group),

⟨R; ·, 1⟩ is a monoid (not necessarily commutative),

multiplication distributes over addition:

x · (y + z) = x · y + x · z

(y + z) · x = y · x + z · x



Unital, Commutative Rings 12

Note that we need two distributive laws since multiplication is not assumed to
be commutative. If multiplication is commutative the ring itself is called
commutative.

One can relax the conditions a bit and deal with rings without a 1: for
example, 2Z is a ring without 1†. Rings with 1 are then called unital rings.

For our purposes, all rings are unital and we want 0 ̸= 1.

†Some authors call these things rngs. No comment.



Examples: Rings 13

Example (Integers)
The integers ⟨Z, +, ∗, 0, 1⟩ with the usual addition and multiplication for a ring.

Example (Modular Numbers)
The integers modulo n, ⟨Zn, +, ∗, 0, 1⟩ with the usual addition and
multiplication form a ring. If n is prime, this ring is actually a field. In
particular there is a two-element field consisting just of 0 and 1. Note that
these fields are finite.

Example (Standard Fields)
The rationals Q, the reals R, the complex numbers C.



Examples: Rings 14

Example (Univariate Polynomials)
Given a ring R we can construct a new ring by considering all polynomials with
coefficients in R, written R[x] where x indicates the “unknown” or “variable”.
For example, Z[x] is the ring of all polynomials with integer coefficients.

Example (Matrix Rings)
Another important way to construct rings is to consider square matrices with
coefficients in a ground ring R.
For example, Rn,n denotes the ring of all n by n matrices with real coefficients.
Note that this ring is not commutative unless n = 1.



Units and Inverses 15

Definition
An inverse u′ of a ring element u is any element such that uu′ = u′u = 1.
A ring element u is called a unit if it has an inverse u′.

Proposition
0 is an annihilator in any ring and cannot be a unit.

Proof. Note that a0 = a(0 + 0) = a0 + a0, whence a0 = 0. If 0′ is an inverse
of 0 we have 1 = 0 0′ = (0 + 0)0′ = 1 + 1, so 0 = 1.

2



Inverses 16

The multiplicative identity in a ring is uniquely determined: 1 = 1 · 1′ = 1′.

Proposition
If u is a unit, then its inverse is uniquely determined.

Proof.
Suppose uu′ = u′u = 1 and uu′′ = u′′u = 1. Then

u′ = u′1 = u′uu′′ = 1u′′ = u′′.

2

As usual, lots of equational reasoning. At any rate, by uniqueness it makes
sense to write the inverse in functional notation as u−1.



Notation 17

R⋆ = R − {0}

R× = units of R

Clearly, R× ⊆ R⋆ but can be much smaller: Z× = {±1}.
On the other hand, Q× = Q⋆.



Classification 18

One first step towards organizing rings into some kind of classification is to
consider sums of 1s (after all, 1 is the only element other than 0 we know to
exist).

1n =
n∑

i=1

1 = 1 + . . . + 1︸ ︷︷ ︸
n

There are two possibilities: all the 1n are distinct, as in Z or Q.

Otherwise, there must be a repetition, say, 1n = 1n+k for some k > 0. But
then 1k = 0.



Characteristic 19

Definition
The characteristic of a ring R is defined by

chr(R) =
{

min
(

k > 0 | 1k = 0
)

if k exists,
0 otherwise.

In calculus, characteristic 0 is the standard case: Q ⊆ R ⊆ C all have
characteristic 0.

For us, rings of positive characteristic are even more important. Typical
example: Zm or Zm[x].



Zero Divisors 20

We are interested in rings that have lots of units. One obstruction to having a
multiplicative inverse is described in the next definition.

Definition
A ring element a ̸= 0 is a zero divisor if there exist b, c ̸= 0 such that
ab = ca = 0.

Recall the old multiplicative map â : R → R , x 7→ ax.
Then â is injective iff a fails to be a zero divisor†.

†Strictly speaking, just a left zero divisor, but we won’t get into the weeds



Integral Domains 21

Definition
A commutative ring is an integral domain if it has no zero-divisors.

In other words, in an integral domain, ⟨R⋆; ·, 1⟩ is a monoid.

Proposition (Multiplicative Cancellation)
In an integral domain we have ab = ac where a ̸= 0 implies b = c.

Proof. ab = ac iff a(b − c) = 0, done. 2



Examples: Integral Domains 22

Example (Standard Integral Domains)
The integers Z, the rationals Q, the reals R, the complex numbers C are all
integral domains.

Example (Modular Numbers)
The ring of modular numbers Zm is an integral domain iff m is prime.

Example (Non-ID)
The ring of 2 × 2 real matrices is not an integral domain:

( 0 1
0 0 ) · ( 1 0

0 0 ) = ( 0 0
0 0 )



Fields 23

Definition
A field F is a ring in which the multiplicative monoid ⟨F ∗; ·, 1⟩ forms a
commutative group.

In other words, every non-zero element is already a unit. As a consequence, in
a field we can always solve linear equations

a · x + b = 0

provided that a ̸= 0: the solution is x0 = −a−1b. In fact, we can solve systems
of linear equations using the standard machinery from linear algebra.

As we will see, this additional condition makes fields much more constrained
than arbitrary rings. By the same token, they are also much more manageable.



Examples: Fields 24

Example
In calculus one always deals with the classical fields: the rationals Q, the reals
R, the complex numbers C.

Example
The modular numbers Zm form a field for m is prime.
We can use the Extended Euclidean algorithm to compute multiplicative
inverses: obtain two cofactors x and y such that xa + ym = 1. Then x is the
multiplicative inverse of a modulo m.
Note that we can actually compute quite well in this type of finite field: the
elements are trivial to implement and there is a reasonably efficient way to
realize the field operations.



Axiomatization 25

Note that one can axiomatize monoids and groups in a purely equational
fashion, we do not need complicated formulae to describe these structures.

For rings we want to be able to say 0 ̸= 1, so we need one inequality.

Alas, for fields things get more complicated: the inverse operation is partial and
we need to guard against argument 0:

x ̸= 0 ⇒ x ∗ x−1 = 1

One can try to pretend that inverse is total and explore the corresponding
axiomatization; this yields a structure called a “meadow” which does not quite
have the right properties.



Products Fail 26

One standard method in algebra that produces more complicated structures
from simpler one is to form a product (operations are performed component-
wise).

This works fine for structures with an equational axiomatization: semigroups,
monoids, groups, and even rings.

Unfortunately, for fields products to not work. For let

F = F1 × F2

where F1 and F2 are two fields. Then F is a ring, but never a field: the
element (0, 1) ∈ F is not (0, 0), and so would have to have an inverse (a, b).

But (0, 1)(a, b) = (0, b) ̸= (1, 1), so F1 × F2 is not a field.
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Polynomials 28

Informally, a (univariate) polynomial is an expression of the form

x3 − 2x2 + 3x − 1

First off, there is a mysterious unknown or variable x.

The summands a xk are monomials† and the coefficient a is supplied by the
ground ring.

Lastly, the whole polynomial is a finite sum of such monomials.

Division is not allowed, all we have is addition and multiplication. In the
example, the ground ring is presumably Z.

†Some authors refer only to xk as a monomial.



Coefficient Representation 29

Hence we can represent a polynomial by its coefficient list:

a = (a0, a1, . . . , an−1)

represents

p(x) = a0 + a1x + a2x2 + . . . + an−1xn−1

If an−1 ̸= 0 then n − 1 is the degree of p.

The coefficient list is the explicit form of the polynomial, a term in a special
normal form: sum-of-products.



Evaluation 30

Suppose we have a univariate polynomial p(x) over ring R. If we think of p(x)
as an expression, it is quite natural to substitute a ring element a for x, written
simply p(a) or perhaps p[a/x] or p[x 7→ a].

Once the substitution has been made we can evaluate to obtain another
element in the ring:

p(x) = x3 − 2x2 + 3x − 1

Upon substitution x 7→ 2 produces

p(2) = 23 − 2 · 22 + 3 · 2 − 1 = 5

Hence each polynomial p is associated with a polynomial function

p̂ : R → R a 7→ p(a)

This may seem like splitting hairs, but it is often important to keep the two
notions apart.



Come on . . . 31

The polynomial and the associated polynomial function really are two different
objects. Consider the ground ring Z2. The polynomial

p(x) = x + x2

has the associated function

p̂(a) = 0

for all a ∈ Z2. In fact, any polynomial p(x) =
∑

i∈I
xi produces the identically

0 map as long as I ⊆ N+ has even cardinality.

Exercise
Describe all polynomial functions over ground rings Z2 and Z3.



Horner’s Rule 32

If the polynomial is given in coefficient form

a = (a0, a1, . . . , ad)

we can efficiently evaluate it by rewriting it in a nested product form:

f(x) =
(
(. . . (adx + ad−1)x + ad−2)x + . . . + a1

)
x + a0

Proposition
A polynomial of degree d can be evaluated in at most d ring multiplications
and at most d ring additions.



Interpolation 33

Suppose we wish to construct a polynomial f that evaluates to given target
values at certain points. Say we want f(ai) = bi for i = 0, . . . , n , where all the
ai are required to be distinct (often called support points). Define the
Lagrange interpolant

Ln
i (x) =

∏
j ̸=i

x − aj

ai − aj

Proposition
Ln

i (ai) = 1 and Ln
i (aj) = 0 for i ̸= j.

Hence we can choose
f(x) =

∑
i≤n

biL
n
i (x)

Note that f has degree bound n.



Lagrange Functions 34



Example 35

Suppose we want f(i) = the ith prime for i = 0, . . . , 5 .

The Lagrange interpolation looks like

f(x) = 2L6
0 + 3L6

1 + 5L6
2 + 7L6

3 + 11L6
4 + 13L6

5

which, after expansion and simplification, produces

1
120(240 − 286 x + 735 x2 − 425 x3 + 105 x4 − 9 x5)



Secret Sharing 36

Suppose you have a “secret” a, a natural number, that you want to distribute
over n people in such a way that no proper subgroup of the n persons can
access the secret but the whole group can.

We may safely assume that a is a m-bit number. Generate n−1 m-bit random
numbers ai and give number ai to person i, i = 1, . . . , n − 1 . Lastly, person n
receives

an = a ⊕ a1 ⊕ a2 ⊕ . . . ⊕ an−1

where ⊕ is bit-wise xor.

Clearly all n secret sharers can compute a, but if one is missing they are stuck
with a random number. This is very similar to one-time pads in cryptography.



Shamir’s Method 37

A better organized approach is built on the following idea: pick a prime
p > a, n. We will use the ground ring Zp (which is actually a field).

Generate random numbers 0 < ai < p for i = 1, . . . , n − 1 .
Define the polynomial

f(x) = a + a1x + . . . + an−1xn−1

f is completely determined by the n point-value pairs (i, bi), i = 1, . . . , n .

By interpolation we can retrieve f from the point-value pairs, hence we can
determine a = a0.

On the other hand, n − 1 persons can obtain no information about the zero
coefficient; every coefficient is equally likely.
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Defining Polynomials 39

Recall our original “definition” of a polynomial.

Informally, a (univariate) polynomial is an expression of the form

x3 − 2x2 + 3x − 1

Wisdom: If you come across a definition of the kind

A foobag is an expression of the form blah-blah-blah.

run for the hills.
Most of the time, all you get is one example of the expressions in question,
containing at least one ellipsis. No explanation of the underlying language, no
definition of what exactly an expression is, certainly no formal grammar that
defines everythin, zip.



StringWorld Rant 40

Here is the “definition” of a real number from an otherwise great introductory
analysis text.

Oh dear, there is nothing formal about this alleged definition. According to the
author, a real number literally is an expression, an infinite string in this case.
On that understanding, the real number π is just the string

+3.141592653589793238462643383279502884197 . . .

where we have omitted a few digits at the end to save paper.



Rant, Continued 41

Sorry, this is just malpractice. The reals are not a bunch of “expressions” like
the ones in the definition. No way, never, ever.

The only justification for this line of attack is that the author does not want to
get involved with a real definition, based on Cauchy sequences or Dedekind
cuts. That’s fine, the text is about analysis after all, but it should be clearly
stated, with links to an actual definition.

And, for crying out loud, don’t call it “formal,” it’s anything but.



And Polynomials? 42

In the case of polynomials, what on earth is

the magic unknown x?
a monomial axk?
a sum of monomials?

All these objects are supposed to live in some algebraic structure, the ring of
polynomials, but we haven’t constructed that object yet.

Since the whole purpose of the definition is to pin down this ring, the
StringWorld definition is hopelessly circular and just a naked appeal to intuition.



Intuition vs Rigor 43

Just to be clear, intuition is the power that drives everything. And, the
StringWorld approach can be helpful to get one’s intuition going. In fact, it is
often the right place to start. To paraphrase Knuth:

Premature formalization is the root of all evil.

But, but, but . . .

One absolutely, totally cannot stop there. Wishy-washy land is where
algorithms go to die–to compute, we need to build data types, and those need
to refer to an actual definition, not just some vague appeal to intuition and
analogy.



Polynomial Rings and Coproducts 44

We start with a definition that tries to home in on the critical algebraic
properties of a polynomial.

Let R be a commutative ring with 1 throughout.

Definition
Given a ring R, the N-coproduct of R is defined by∐

N

R = { (an) ∈ RN | only finitely many an ̸= 0 }

An element of the coproduct is a sequence (ai)i≥0 of elements of R, subject to
the condition that an = 0 for all n ≥ m, for some threshold m.

So, in a way, we are still dealing with finite sequences.



Fudging it 45

Since almost all the terms an are 0, it makes sense to write

a0 + a1x + . . . + anxn

instead of (a0, a1, . . . , an, 0, 0, 0, . . .).

In fact, one often insists tha an is the last non-zero element in the sequence (or
n = 0 if they all are 0).

Note that the “unknown” x is nothing but syntactic sugar, all we really have is
a sequence with finite support. We might as well use X, y, z, fred, whatever.



Operations on Coproducts 46

Again, there is no “unknown” in the definition of the coproduct. That makes it
easier to give clean definitions of the algebraic structure. Addition is easy:

(an) + (bn) = (an + bn)

The sum (an) + (bn) is again an element of the coproduct and it is not too
hard to check that this operation is associative and commutative.

But multiplication is somewhat more complicated (Cauchy product):

(an) · (bn) =
( ∑

i+j=n

ai · bj

)

Proposition
The product (an) · (bn) is an element of the coproduct.



More Arithmetic 47

Write 0 and 1 for the sequences (0, 0, 0, . . .) and (1, 0, 0, . . .), respectively.
We have a + 0 = a so that 〈∐

R; +, 0
〉

is a commutative monoid and even a group.

Likewise 1 · a = a · 1 = a and 〈∐
R; ·, 1

〉
is also a commutative monoid (assuming that R is commutative).



The Unknown 48

Here is a much more interesting element: let

x = (0, 1, 0, 0, 0, . . .)

Then x2 = (0, 0, 1, 0, 0, . . .), x3 = (0, 0, 0, 1, 0, . . .) and so forth.

This justifies the all the syntactic sugar in the notation

a0 + a1x + . . . + anxn

instead of the actual coproduct element

(a0, a1, . . . , an, 0, 0, . . .)

We have quietly used the fact that we can embed all of R in the coproduct:

a 7→ (a, 0, 0, . . .)

Moreover, this map is (trivially) a ring monomorphism.



The Polynomial Ring 49

Lemma
⟨
∐

R; +, ·, 0, 1⟩ is a ring. This ring is commutative whenever R is.

This is unsurprising, but note that a proof requires a bit of work: we have to
verify e.g. that multiplication as defined above really is associative.
We ignore the details.

Definition
The ring ⟨

∐
R; +, ·, 0, 1⟩ is the polynomial ring with coefficients in R and is

usually written R[x].

In calculus one studies R[x].
For our purposes, Q[x], Z[x], Zm[x] or F[x] where F is a finite field will be
more important.



Homomorphisms 50

Definition
Let R and S two rings. A ring homomorphism is a map f : R → S such that

f(a + b) = f(a) ⊕ f(b)
f(a · b) = f(a) ∗ f(b)
f(1R) = 1S

A homomorphism is an epimorphism if it is surjective, an monomorphism if it is
injective, and an isomorphism if it is bijective. An endomorphism is a
homomorphism R → R, and a automorphism is an isomorphism R → R.
The kernel of a homomorphism f is { x ∈ R | f(x) = 0 }.

One can show that f(0R) = 0S and f(−a) = −f(a). For any unit u ∈ R, f(a)
is a unit in S and f(a)−1 = f(a−1).



Polynomials and Division 51

Definition
Given two polynomials f and g, g divides f if for some polynomial q: q · g = f .

For the integers, the most important algorithm associated with the notion of
divisibility is the Division Algorithm: we can compute quotient q and remainder
r such that a = qb + r, 0 ≤ r < b. The situation for polynomials is very
similar.

Theorem (Division Algorithm)
Assume that F is a field. Let f and g be two univariate polynomials over F ,
g ̸= 0. Then there exist polynomials q and r such that

f = q · g + r where deg(r) < deg(g).

Moreover, q and r are uniquely determined.



Proof Sketch 52

For existence consider the set of possible remainders

S = { f − q · g | q ∈ F [x] }.

If 0 ∈ S we are done, so suppose otherwise.
Trick: let r ∈ S be any element of minimal degree, say r = f − qg.
Write m = deg(r) and n = deg(g), so we need m < n.
Assume m ≥ n and define

r′ = r − am

bn
xm−n g

where am and bn are the leading coefficients of r and g, respectively.
But then deg(r′) < deg(r) and r′ ∈ S, contradicting minimality.

Uniqueness is left as an exercise.



Application: GCD 53

An important application of the Division Algorithm for integers is the Euclidean
algorithm for the GCD.
Likewise we can obtain a polynomial GCD algorithm from the Division
Algorithm for polynomials.
In fact, essentially the same algorithm works, just replace Z by Z[x].

For example, we can obtain cofactors s and t such that

gcd(f, g) = sf + tg.
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Roots 55

Definition
A ring element a ∈ R is a root of p(x) ∈ R[x] if p(a) = 0.

In other words, a root is any solution of the equation p(x) = 0.

Finding roots of polynomial equations is often very difficult, in particular when
several variables are involved. For univariate polynomials over the reals good
numerical methods exist, but over other rings things are problematic.

For example, computing square roots, i.e. solving x2 − a = 0, over Zm is
surprisingly difficult. Of course there is a brute-force algorithm, but think of
modulus m having thousands of digits.

And for Z[x1, x2, . . . , xn] it is even undecidable whether a root exists.



Roots and Divisibility 56

Lemma
Let a be a root of f ∈ F [x]. Then (x − a) divides f(x).

Proof. Write
f = q(x − a) + r

where deg(r) < 1. But then r must be 0, done. 2

Lemma
Any non-zero polynomial f ∈ F [x] has at most deg(f) many roots.

Proof. Use the last lemma and induction on the degree. 2



Decomposition 57

So if deg(f) = n and f has n roots we decompose f completely into linear
terms:

f = c(x − a1)(x − a2) . . . (x − an)

Of course, there may be fewer roots, even over a rich field such as R:
f = x2 + 2 has no roots.

This problem can be fixed by enlarging R to the field of complex numbers C
(the so-called algebraic completion of R).



More Roots 58

Note that over arbitrary rings more roots may well exist.
For example over R = Z15 the equation x2 − 4 = 0 has four roots: {2, 7, 8, 13}.
But over the integers this fails:

(x − 2)(x − 7)(x − 8)(x − 13) = 1 + 7x2 + x4 ̸≡ x2 − 4

Exercise
Using the Chinese Remainder theorem explain why there are four roots in the
example above. Can you generalize?



Point-Value Representation 59

The fact that a non-zero polynomial of degree n can have at most n roots can
be used to show that the interpolating polynomial

f(x) =
∑

i

bi

∏
j ̸=i

x − aj

ai − aj

is unique: suppose g is another interpolating polynomial so that g(ai) = bi.
Then f − g has n + 1 roots and so is identically zero.

Hence we have an alternative representation for polynomials: we can give a list
of point-value pairs rather than a list of coefficients.
To the naked eye this proposal may seem absurd: why bother with a
representation that is clearly more complicated? As we well see, there are
occasions when point-value is computationally superior to coefficient list.



Multiplying Polynomials 60

Suppose we have two univariate polynomials f and g of degree bound n.
Using the brute force algorithm (i.e., literally implementing the definition of
multiplication in

∐
R) we can compute the product fg in Θ(n2) ring

operations.
Now suppose we are dealing with real polynomials. There is a bizarre way to
speed up multiplication:

Convert f and g into point-value representation where the support points
are carefully chosen.
Multiply the values pointwise to get h.
Convert h back to coefficient representation.
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It may seem absurd to spend all the effort to convert between coefficient
representation and point-value representation. Surprisingly, it turns out that
the conversions can be handled in Θ(n log n) steps using a technique called
Fast Fourier Transform.

But the pointwise multiplication is linear in n, so the whole algorithm is just
Θ(n log n).

Theorem
Two real polynomials of degree bound n can be multiplied in Θ(n log n) steps.

Take a look at an algorithm book for details.



Vandermonde Matrices 62

Here is another look at conversions between coefficient and point-value
representation, i.e., between evaluation and interpolating.

Definition
Define the n by n Vandermonde matrix by

VM(x0, x1, . . . , xn−1) =


1 x0 x2

0 . . . xn−1
0

1 x1 x2
1 . . . xn−1

1
1 x2 x2

2 . . . xn−1
2

...
...

...
...

1 xn−1 x2
n−1 . . . xn−1

n−1



Lemma

|VM(x)| =
∏
i<j

xj − xi
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It follows that the Vandermonde matrix is invertible iff all the xi are distinct.
Now consider a polynomial

f(x) = c0 + c1x + . . . + cn−1xn−1

To evaluate f at points a = (a0, . . . , an−1) we can use matrix-by-vector
multiplication:

b = VM(a) · c

But given the values b we can obtain the coefficient vector by

c = VM(a)−1 · b



Implicit to Explicit 64

None of the implicit descriptions of a polynomial match the actual definition in
terms of a coproduct.

But, we can recover the explicit polynomial (i.e., the coefficient list) from these
explicit representations. E.g., the implicit polynomial

(x1 − x2) (x3 − x4) (x5 − x6)

expands to

x1 x3 x5 − x2 x3 x5 − x1 x4 x5 + x2 x4 x5 − x1 x3 x6 + x2 x3 x6 + x1 x4 x6 − x2 x4 x6.

We just have to expand (multiply out) to get the “classical form”.

What exactly is meant by “expanding” a polynomial?



Expanding Polynomials 65

We want to bring a multivariate polynomial f(x1, x2, . . . , xn) into coproduct
form. First we apply rewrite rules to push multiplication to the bottom of the
tree until we have a sum of products:

α(β + γ) 7→ αβ + αγ

(β + γ)α 7→ βα + γα

Then we collect terms with the same monomial and adjust the coefficient.
. . . + cxe + . . . + dxe . . .⇝ . . . + (c + d)xe + . . .

Some terms may cancel—we don’t keep monomials with coefficient 0.

The problem is that it may take exponential time to perform the expansion:
there may be exponentially many terms in the actual polynomial.



Dire Warning 66

There are NP-complete problems like Graph-3-Coloring that could be solved in
polynomial time if we could somehow get polynomial expansion under control
and perform it in polynomial time.

Take this statement with pounds of salt, obviously the expansion cannot be
handled in polynomial time when the coefficient form has exponential size.

More technically, it turns out that a graph is 3-colorable iff a certain
polynomial does not vanish. Checking that a polynomial in coefficient form
vanishes is trivial, but in implicit form it is hard.
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