
15-354: CDM K. Sutner

Assignment 1 Due: Sep. 6, 2024.

1. Primitive Recursion (30)

Background
In a function based environment we can define bounded search as follows. Let g : Nn+1 → N . Then f = BS[g] :
Nn+1 → N is the function defined by

f(x, y) =
{

min
(

z < x | g(z, y) = 0
)

if z exists,
x otherwise.

Hence f(x, y) = x indicates failure and f(x, y) = z < x means that z is the least example found.

Task

A. Show that f(x, y) =
∑

z<h(x) g(z, y) is primitive recursive when h is primitive recursive and strictly monotonic.

B. What if h is not monotonic?

C. Show that BS[g] is primitive recursive whenever g is.

Comment
Do not simply argue in terms of closure but give explicit primitive recursive definitions of these summation operations.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Primitive Recursion
We will ignore the parameters y throughout.

Part A: Bounded Sum
Define a summation function S(a, d) =

∑a+d−1
x=a g(x). We claim that S is primitive recursive.

S(a, 0) = 0
S(a, d+) = S(a, d) + g(a + d)

Now define

f(0) = S(0, h(0))
f(x+) = f(x) + S(h(x), h(x+) − h(x))

By monotonicity, the subtraction is actually proper subtraction, so f is primitive recursive. But f(x) is none other
than

∑
z<h(x) g(z).

Part B: Non Monotonic
The summation is still primitive recursive, but the definition of f is now by cases, depending on whether h(x) ≤ h(x+)
or not.



Part C: Bounded Search
Define a predicate

P (z, x) ≡
(
z = x ∨ (z < x ∧ g(z) = 0)

)
∧ ∀ u < z (g(u) ̸= 0)

From the definition, for any x there is a unique z ≤ x such that P (z, x) holds, either the first witness for a root of g,
or the default value x. Now let

f(x) =
∑
z≤x

z · charP (z, x)

using part (A) for the sum. Then f shows that bounded search is primitive recursive.
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2. A Recursion (30)

Background
Consider the following function f , presumably defined on the positive integers.

f(1) = 1
f(3) = 3

f(2n) = f(n)
f(4n + 1) = 2f(2n + 1) − f(n)
f(4n + 3) = 3f(2n + 1) − 2f(n)

For what it’s worth, here is a plot of the first few values.
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Task

A. Consider small values of f and conjecture an explicit, non-recursive definition of f .

B. Prove that your definition is correct and conclude that f is indeed a function from N+ to N+.

C. Is f primitive recursive?

Comment
Implement f and experiment.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: A Recursion
Part A: Conjecture
It is clear that f(2k) = 1. A little induction shows that Mersenne numbers n = 2k − 1 are fixed points. Similarly
Fermat numbers n = 2k + 1 are fixed points. Likewise f(3 2k) = 3. This suggests that one should probably write the
arguments in binary. Write bin(x) for the binary expansion of x (MSD first, no leading zeros), val(b) for the numerical
value of the binary digit sequence b, and rev(b) for the reverse of a digit sequence. A few more experiments indicate
that

f(x) = val(rev(bin(x)))

CDM HW 1 3 of 7



Part B: Proof
Below we write the arguments in binary, but the coefficients are still written in decimal. From the definition of f , we
have

f(1) = 1
f(11) = 11
f(x0) = f(x)

f(x01) = 2f(x1) − f(x)
f(x11) = 3f(x1) − 2f(x)

A modular induction shows that the conjecture really holds.
The claims about domain and codomain follow immediately.

Part C: PR
To show that the characterization from part (A) implies that f is primitive recursive, define a few auxiliary operations:

M2(x) = x mod 2
D2(x) = x div 2
K2(x) = max

(
z < x | 2z ≤ x < 2z+1 )

It is easy to check that these are all primitive recursive.
Now suppose bin(x) = dkdk−1 . . . d1d0 where di ∈ 2, dk ̸= 0, so that

x =
k∑

i=0
di 2i f(x) =

k∑
i=0

di 2k−i

Here k = K2(x) and di = M2(Di
2(x)), so the sum is over a p.r. function and the bound is also p.r. Hence f is also p.r.

One could also argue more directly about the digit sequence operations as shown in the next problem on p.r. word
functions.
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3. Primitive Recursive Word Functions (40)

Background
We defined primitive recursive functions on the naturals. A similar definition would also work for words over some
alphabet Σ. We write ε for the empty word and Σ⋆ for the set of all words over Σ. Consider the clone of word
functions generated by the basic functions

• Constant empty word E : (Σ⋆)0 → Σ⋆ , E() = ε,

• Append functions Sa : Σ⋆ → Σ⋆ , S(x) = x a where a ∈ Σ.

and closed under primitive recursion over words: suppose we have a function g : (Σ⋆)n → Σ⋆ and a family of functions
ha : (Σ⋆)n+2 → Σ⋆ , where a ∈ Σ. We can then define a new function f : (Σ⋆)n+1 → Σ⋆ by

f(ε, y) = g(y)
f(xa, y) = ha(x, f(x, y), y) a ∈ Σ

We will call the members of this clone the word primitive recursive (w.p.r.) functions.

Task

1. Show that the reversal operation rev(x) = xnxn−1 . . . x1 is w.p.r.

2. Show that the prepend operations prea(x) = a x are w.p.r.

3. Show that the concatenation operation cat(x, y) = x y is w.p.r.

4. Prove that every primitive recursive function is also a word primitive recursive function. By this we mean that
for every p.r. function f : Nk → N there is a w.p.r. function F : (Σ⋆)k → Σ⋆ so that f(x) = D(F (C(x))) where
C and D are simple coding and decoding functions (between numbers and words).

5. Prove the opposite direction: every w.p.r. is already p.r., using coding and decoding as in the last problem.

Comment
For the last part, don’t get bogged down in tons of technical details, just explain how one would go about proving
this.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: PR Words Functions
Part A: Reversal
We will use a prepend operation, justified in part (B).

rev(ε) = ε

rev(xa) = prea(rev(x))

Part B: Prepend

prea(ε) = a

prea(xb) = Sb(prea(x))
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Part C: Concatenation

cat(ε, y) = y

cat(xa, y) = cat(x, prea(y))

Part D: Translation
We first need to fix the coding functions. Choose the unary alphabet Σ = {a}. To keep things simple, let C(n) = an,
and D = C−1.
Then all the basic p.r. functions are obviously w.p.r. (and projections don’t even require any coding). Similarly, we
have closure in both classes. It’s not hard to check that primitive recursion over N translates directly into primitive
recursion for words over a⋆: append corresponds to successor (and ε to 0).
The key point here is that we don’t need the power of words over larger alphabets. It builds character to show that we
could also use, say, the alphabet Σ = {0, 1}, encode natural numbers in binary, and then define successor, addition,
multiplication and so on in a w.p.r. fashion.

Part E: Back-Translation
The opposite direction is a little more tedious: we need to represent every w.p.r. function f as a p.r. function f̂ . We
can ignore the case of one-letter alphabets.
First, we may safely assume that our alphabet is a digit alphabet of the form Σ = {0, 1, . . . , k−1}, k > 1, so we can
associate every word w over Σ with a numerical value val(w) (think of writing numbers in base k). Since we have to
go back and forth between Σ⋆ and N, we need to find a convenient way to do so. There are many possibilities, the
cheapest is probably to enumerate all words in length-lex order. For k = 3 this would mean

ε, 0, 1, 2, 00, 01, 02, 10, 11, 12, 20, 21, 22, 000, 0001, . . .

The position pos(w) of w in this list is (k|w| −1)/(k −1)+val(w). The inverse function wrd(n) is slightly more tedious:
given n, let ℓ = ⌊logk(n(k − 1) + 1)⌋; then wrd(n) is the base k expansion of n, padded to ℓ digits.
We can code words w = a1a2 . . . an over Σ as sequence numbers ŵ = ⟨a1, . . . , an⟩ where ai ∈ [k]. Write W ⊆ N for the
collection of all such sequence numbers, so W is p.r. It is clear that in W we can check for the empty word, extract
the last letter an, drop the last letter v̂ = ⟨a1, . . . , an−1⟩ and so on, all in a primitive recursive fashion. For x ∈ W we
write x̃ for the corresponding word.
So we need to show that for any w.p.r. function f there is a p.r. function f̂ such that

f(w1, . . . , wn) = wrd
(
f̂(pos(w1), . . . , pos(wn)

)
The w.p.r. basic functions are easy: Ê = 0. For the arithmetic version of the successor Sa we need to compute pos(wa)
given pos(w) and a. Letting ℓ = |w| we have

pos(wa) = (kℓ+1 − 1)/(k − 1) + val(wa) = (kℓ+1 − 1)/(k − 1) + val(w) + val(a)

But ℓ and val(w) can easily be recovered in a p.r. manner from pos(w), done. Note that one can also go in the opposite
direction, given pos(wa), we can determine pos(w) and a.
The real problem is to deal with primitive recursion over words. For simplicity, let’s only handle the case where there
are no parameters. We have a word function

f(ε) = u

f(wa) = ha(w, f(w)) a ∈ Σ, w ∈ Σ⋆

For the recursion, note that pos(w) < pos(wa), so the corresponding arithmetic function ĥa will be called on a smaller
argument. This is slightly more complicated than the usual step x+ 7→ x, corresponding to course-of-value recursion.
But that is not really a problem, since we have our sequence number machinery: we can just code up all previous
values as a sequence number (in other words, p.r. functions are also closed under course-of-value recursion).
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Comment: It is tempting to say that the coding and decoding maps pos and wrd are p.r., but that does not typecheck.
To fix this problem one could set up a notion of primitive recursive functions over a larger universe that includes N
and Σ⋆. Hereditarily finite sets would work, and then our pos and wrd functions indeed turn out to be “primitive
recursive.”
A less high-powered approach would be to identify a word w with its sequence number ⟨w1, . . . , wℓ⟩; one can then
check that all our functions are p.r.
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