
15-354: CDM K. Sutner

Assignment 2 Due: Sep. 13, 2024.

1. Loopy Loops (40)

Background
Consider a small programming language LOOP that has only one data type, natural numbers. The syntax is described
in the following table:

constant 0 ∈ N
variables x, y, z, . . . ranging over N
operations increment x++
assignments x = 0 and x = y
sequential composition P ; Q
control do x : P od

The semantics are obvious, except for the loop construct: do x : P od is intended to mean: “Let n be the value of
x before the loop is entered; then execute P exactly n times.” Thus, the loop terminates after n rounds even if P
changes the value of x. For example, the following LOOP program computes addition:

// add : x, y --> z
z = x;
do y :

z++;
od

Here x and y are input variables, and the result is in z. We assume that all non-input variables are initialized to 0. So,
we have a notion of a LOOP-computable function (this is entirely analogous to our definitions for register machines).

Task

A. Show how to implement multiplication and the predecessor function as LOOP programs.

B. What function does the following loop program compute?
// mystery : x --> x

do x:
do x: x++ od

od

C. Show that every primitive recursive function is LOOP-computable.

D. Show that every LOOP-computable function is primitive recursive.

E. Informally, what is the key difference between LOOP and register machine programs?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Loop Programs
Part A: Multiplication, Predecessor
Here is multiplication as a LOOP-program (with nested loops).



// mult : x, y --> z
do x :

do y :
z++;

od
od

We have indicated the input variables x and y, and the output variable z in line 1 of the program.
And predecessor:

// pred : x --> z
do x :

z = v;
v++;

od

So z is lagging behind v by 1 after line 4 is executed, and upon termination v has value x.

Part B: Mystery
The function is x 7→ x · 2x: the inner loop simply doubles the value of x.

Part C: PR is Loop
We should start with a careful definition of the semantics of a loop program. Since the basic idea is clear, we only will
refer to the input variables of a program and the output variable; other details are ignored here.
It is easy to see that the basic primitive recursive functions can all be computed by a LOOP program, so we only have
to show that we can deal with composition and primitive recursion.
Composition
Consider f = g ◦ (h1, h2, . . . , hm) where each hi is computed by some loop program Hi and g is computed by loop
program G. We may safely assume that there is no clash between the variables in these programs (otherwise rename).
Let’s suppose that the input variables for Hi are xij and the output variable is yi. Also, the input variables for G are
zi and the output variable is z. Let x1, x2, . . . , xn be fresh variables. Then the loop program

x11 = x1; x12 = x2; . . . ; x1n = xn; H1;
x21 = x1; x22 = x2; . . . ; x2n = xn; H2;

. . .

xm1 = x1; xm2 = x2; . . . ; xmn = xn; Hm;
z1 = y1; z2 = y2; . . . ; zm = ym; G

computes f with input variables x1, x2, . . . , xn and output variable z. So this is really just a question of handing over
appropriate values; composition is built into loop programs.

Primitive Recursion
Consider f = Prec[g, h]. For simplicity assume that f is binary so that f(0, y) = g(y) and f(x+, y) = h(x, f(x, y), y).
Assume by induction that loop programs G and H compute g and h, respectively. Assume further that G has input
y, output z and H has input xx, z and y, and output u. Then the program

G; xx = 0;
do x:

H;
z = u;
x++;

od

CDM HW 2 2 of 7



computes f with input x, y and output z.

Part D: Loop is PR
Let P be any LOOP program, and suppose that the variables in P are x1, . . . , xm. We denote by x′

i the value of xi

after execution of P . To avoid complications, let us assume that all variables have been assigned specific values before
execution of P . We will also be a little sloppy in distinguishing between a variable and its value. We have to show
that the update functions

fi(x1, . . . , xm) = x′
i.

which describe the value of any specific variable as a function of all the variables, after one execution of P , are all
primitive recursive.
Proof is by induction on P . For loop-free P the claim is trivial, and is not hard to see that composition of programs
preserves this property. So suppose P has the form

// P
do t: Q; od

We may safely assume that t does not occur in Q, otherwise rename variables. But then we can ignore variable t
altogether since it’s value does not change. In one step the values change according to

x1 x2 . . . xm

f1(x) f2(x) . . . fm(x)

Recall that we can code all the inputs into a single value using sequence numbers. We can accordingly modify the fi

so that they take this sequence number as input; call the new p.r. functions gi. Now define

h(x) = ⟨g1(x), g2(x), . . . , gm(x)⟩

Clearly h is p.r. By primitive recursion define

H(0, x) = ⟨x⟩
H(t+, x) = h(H(t, x))

Then H is p.r. and we can obtain a p.r. update functions for P by decoding (extracting the ith component).
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2. Register Machines and Sequence Numbers (30)

Background
Recall the coding function for sequences of natural numbers introduced in class:

π(x, y) = 2x(2y + 1)
⟨nil⟩ = 0

⟨a1, . . . , an⟩ = π(a1, ⟨a2, . . . , an⟩)

Task

A. Give a simple bound on ⟨a1, . . . , an⟩ in terms of n and max ai.

B. Construct a register machine program digcnt that, on input x, returns the number of binary digits of x (no
leading zeros, except when x = 0).

C. Construct a register machine program append that, on input ⟨a1, . . . , an⟩ and b, returns ⟨a1, . . . , an, b⟩.

D. Roughly, what is the running time of your programs?

Comment
Make sure to give a detailed explanation of how your programs work, plain RMP code drives the TA nuts. A flowgraph
might be a good idea, too.
For the running time do not try to come up with a precise answer, just order of magnitude.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: RMs and Sequence Numbers
Part A: Bound
A simple induction on n shows that ⟨a1, . . . , an⟩ has the form

1 00 . . . 0︸ ︷︷ ︸
an

1 00 . . . 0︸ ︷︷ ︸
an−1

. . . 1 00 . . . 0︸ ︷︷ ︸
a2

1 00 . . . 0︸ ︷︷ ︸
a1

Hence we have the bound
⟨a1, a2, . . . , an⟩ < 2n+

∑
ai ≤ 2n(a+1)

where a = max ai.

Part B: Digcnt
This is really a modification of the digit sum machine, except that this time we need to increment our counter for all
digits, not just 1s.

0: dec X 1 3
1: dec X 2 3
2: inc Y 0
3: inc D 4
4: dec Y 5 8
5: inc Y 6
6: dec Y 7 0
7: inc X 6
8: halt
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Part C: Append
Append is a bit harder than prepend (see lecture slides), we have to add a block 1 0 . . . 0︸ ︷︷ ︸

b

to the binary expansion of x.

To this end, suppose we already have a register U = X and D holding the digit count of x. Then execute the following
program to compute Z = 2D+b+1

0: dec B 1 2
1: inc D 0
2: inc D 3
3: inc Z 4
4: dec D 5 10
5: dec Z 6 8
6: inc V 7
7: inc V 5
8: dec V 9 4
9: inc Z 8

10: halt

For the append program, instead of halting, have the last machine add X to Z. Done.

Part D: Running Time
Each round takes about 5/2 x+1 steps, and the value of x is reduced to x/2. So the total damage is about 5 x+O(log x),
linear in x.

For the whole append operation we get O(x2b) steps.
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3. The Busy Beaver Function (RM) (30)

Background
The Busy Beaver function β is a famous example of a function that is just barely non-computable. For our purposes,
let’s define β(n) as follows. Consider all register machines P with n instructions and no input (so all registers are
initially 0). Executing such a machine will either produce a diverging computation or some output xP in register R0.
Define β(n) to be the maximum of all xP as P ranges over n-instruction programs that converge.
It is intuitively clear that β is not computable: we have no way of eliminating the non-halting programs from the
competition. Alas, it’s not so easy to come up with a clean proof. One line of reasoning is somewhat similar to the
argument that shows that the Ackermann function is not primitive recursive: one shows that β grows faster than any
computable function.

Task

A. Show that, for any natural number m, there is a register machine without input that outputs m and uses only
O(log m) instructions.

B. Assume f : N → N is a strictly increasing computable function. Show that for some sufficiently large x we must
have f(x) < β(x).

C. Conclude that β is not computable.

D. Prof. Dr. Blasius Wurzelbrunft sells a device called HaltingBlackBoxTM that allegedly solves the Halting Problem
for register machines. Explain how Wurzelbrunft’s gizmo could be used to compute β.

Comment
The bound in part (A) is far from tight in special cases: some numbers m have much shorter programs: think about
22k . But, in general log m is impossible to beat (Kolmogorov-Chaitin program-size complexity). Part (D) says that β
is K-computable.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: The Busy Beaver Function
Part A: Generating m

A simple loop can be used to replace the contents x of a register by 2x and likewise for 2x + 1. By using log m many
of these loops we can construct m from its binary expansion.

Part B: Domination
Suppose f is a computable, strictly increasing function. Then, for any number n, we can construct a program Pn as
follows:

// P_n:
m = f(2*n);
return m;

So Pn returns f(2n). Written out as register machine, Pn requires at most log n + c instructions for some constant
c (essentially the submachine computing f) by part (A). But then for sufficiently large n (more precisely, we need
log n + c ≤ n) we have

β(n) ≥ f(2n) > f(n),

as required.
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Part C: Non-Computability
Follows from part (B): If β were computable, β′(n) = max

(
β(i) | i < n

)
+ n would also be computable and is strictly

increasing by brute force.
Alternatively we could argue here that β itself must already be strictly increasing, so there is really no need for β′.

Part D: Wurzelbrunft
Given Wurzelbrunft’s device we can compute β(n) as follows. First generate a list of all programs of size n. While
this list is wildly exponential in size, it is still finite and easy to generate in principle. Next use Wurzelbrunft’s box
to remove all those programs from the list that fail to terminate. Now run all the remaining programs to completion:
since they all halt we can simply keep computing till all the machines have finished. Lastly, determine which machine
has generated the largest output.
Offering money for Wurzelbrunft’s device is a bad idea since it contradicts the unsolvability of the Halting problem.
You might as well purchase a perpetual motion machine or believe in sustainable growth of 2% per year.
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