
15-354: CDM K. Sutner

Assignment 4 Due: Sep. 27, 2024, 24:00.

1. Word Binomials (40)

Background
By a subsequence or subword of a word v = v1v2 . . . vm we mean any word u = vi1vi2 . . . vir where 1 ≤ i1 < i2 <
. . . ir ≤ m is a strictly increasing sequence of indices. In other words, we can erase a few letters in v to get u. Thus
bbc and cab are subsequences of ababacaba but cbb is not.

Note that a specific word can occur multiple times as a subsequence of another. For example, aab appears 7 times in
ababacaba. We write (

v

u

)
= C(v, u) = number of occurrences of u as a subsequence of v.

The notation is justified since “word binomials” generalize ordinary binomial coefficients:
(

n
k

)
=

(
an

ak

)
. Note that

instances of u as a subsequence of v in general overlap, e.g., C(a3, a2) = 3.

Task
Recall the Kronecker delta defined by δa,b = 1 iff a = b, 0 otherwise. Let a, b ∈ Σ and u, v, ui, vi ∈ Σ⋆.

A. Show that (
va

ub

)
=

(
v

ub

)
+ δa,b

(
v

u

)
B. Show that (

v1v2

u

)
=

∑
u=u1u2

(
v1

u1

)(
v2

u2

)
C. Give an efficient algorithm to compute word binomials.

D. Give a simple description (in terms of union, concatenation and Kleene star) of the language

L = { v ∈ {a, b}⋆ | C(v, ab) = 3 }

E. Construct the minimal DFA for L by diagram chasing (aka doodling).

F. Generalize: given a word u and an integer r construct a DFA that accepts

L(u, r) = { v ∈ Σ⋆ | C(v, u) = r }

Is your machine always minimal?

Comment
For what it’s worth, here is a picture of the smallest possible DFA checking for 6 subwords aab. Make sure you
understand how this machine works. Your construction will probably produce a much larger machine–but one that is
also much easier to describe than this minimal one.



subword aab 6-count

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Word Binomials
Part A: Recursion
For ub to be a subsequence of va it must either be a subsequence of v alone or u must be a subsequence of v provided
that a = b.

Part B: Summation
For u be subsequence of v1v2 there has to be a factorization u = u1u2 such that ui is a subsequence of vi.

Part C: Algorithm
We can use the recursion in part (A) to compute word binomials by dynamic programming. To this end, let n = |x|
and m = |y| (we may assume m ≤ n).
We construct an (n + 1)(m + 1) table of integers T such that

T (i, j) =
(

x1 . . . xi

y1 . . . yj

)
for 0 ≤ i ≤ n and 0 ≤ j ≤ m. Thus T (n, m) =

(
x
y

)
is desired result. Initialize T (i, 0) = 1, T (0, j) = 0 for j > 0 and use

T (i, j) = T (i − 1, j) + δxi,yj
T (i − 1, j − 1).

to fill in the table. The running time is clearly O(nm).

Part D: Sample Language
It is not hard to see that

(
v
ab

)
= 3 implies that

(
x
ab

)
= 3 for all x ∈ b⋆va⋆, so we only need to look for words of the

form v = aub. A little thought shows that the only choices are v = aaab, abab, abbb.
Thus L = b⋆{aaab, abab, abbb}a⋆.

Part E: Minimal DFA for Sample
The obvious DFA checks for those three words and ignores initial b’s and final a’s:

subword ab 3-count
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The DFA is minimal since the distance between the initial and final state cannot be less than 4 and we must have
δ(q0, aa) ̸= δ(q0, ab).

Part F: General DFA
The idea is to use part (A). Let n = |u| and write u(i) = u1 . . . ui for the prefix of u of length i. We use as state set

Q = [0, r + 1]n,

the initial state is q0 = (0, . . . , 0) and the final states are of the form (. . . , r). Define the transition function by

δ(p, a)i = max(pi + ∆a,vi
pi−1, r + 1)

where p0 = 0 and ∆ denotes the Kronecker delta.
An easy induction on x then shows that

δ(q0, x) =
((

x

u(1)

)
,

(
x

u(2)

)
, . . . ,

(
x

u(n)

))
Hence the automaton works properly.
In a serious implementation one would only construct the accessible part of this machine, starting at q0 and applying δ
to obtain the appropriate closure. Not unexpectedly, even the accessible part is in general not minimal. For example,
for the sample language, we get an accessible DFA with 21 states rather than the potential maximum of 25; the trim
part has 11 states, but the minimal PDFA has only 6 states.

CDM HW 4 3 of 7



2. Semilinear Counting (30)

Background
It is often stated that “finite state machines cannot count.” To a point, that is correct, but there are special cases
when a finite state machine is perfectly capable of counting. Here are some fairly involved examples of counting in
zero space.

Recall that a set C ⊆ N is semilinear if it is a finite union of sets of the form

Ct,p = t + pN = { t + i p | i ≥ 0 }

where t, p ∈ N; for p = 0 this is just the singleton {t} (think of transient and period). Let LC = { 0ℓ | ℓ ∈ C } ⊆ 0⋆,
the numbers in C written in unary.

Let U ⊆ Σ+ be a regular language. A U -factorization of x ∈ Σ+ is a sequence u1, . . . , uℓ of words in U such that
x = u1 . . . uℓ, ℓ ≥ 1. Write fac(x, U) for the set of all U -factorizations of x and define

L(U, C) = { x ∈ Σ+ | |fac(x, U)| ∈ C }

Thus, L(U, C) collects all words that have exactly ℓ many U -factorizations where ℓ ∈ C.

Task

A. Construct the minimal automaton for LC .

B. Conclude that the semilinear sets form a Boolean algebra.

C. Show that L(U, C) is regular.

Comment For (A), make sure your automaton is really minimal. For the last part, you probably want to use a
pebbling argument and closure properties. Try C = {3} first, then C = evens.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Semilinear Counting
Part A: Minimal
First off, the minimal DFA for any tally language has the shape of a lasso with some transient t and some period
p. In particular the minimal DFA for Ct,p has transient t and period p; the only final state is the anchor where the
transient and cycle meet.
For the unions, we use the standard product construction that produce yet another lasso automaton. For such a
lasso DFA to be minimal, we need two conditions. First, think of the final states on the cycle as being given by a
binary word u ∈ 2p. Then u must be primitive (not a repetition of a shorter word, the so-called root): otherwise
we could replace the loop by a shorter one based on the root of u. Second, consider the state p where the transient
meets the loop (if there is none, we are already done) and let p1 and p2 be the two predecessors. Then we must have
p1 ∈ F ⊕ p2 ∈ F : otherwise, they could be merged.

Part B: Boolean
Follows directly from (A) and the fact that regular languages form a Boolean algebra.

Part C: Factorizations
We can exclude C = ∅ and C = N (why?). Now, since C is semilinear and regular languages are closed under union,
it suffices to handle the special case C = t + pN.
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Suppose A is a DFA for U . Here is the argument for p ≥ 1, the case p = 0 is easier and left as an exercise. We need a
convenient way to express the position of a speed-1 particle on a lasso with transient t and period p.

s mod t:p =
{

s if s < t,
t + (s − t mod p) otherwise.

For t = 0 this is just the ordinary mod. We place a pebble on the initial state of A and move as usual except that
two pebbles on a single state do not simply merge, they are counted modulo mod t:p. When a pebble arrives at a final
state, another pebble is placed on the initial state. The machine accepts whenever the total number N of pebbles on
the final states satisfies t = N mod t:p.
Since the total number of pebbles placed in A is bounded by (t + p − 1)|A|, we still have a finite state machine and
in fact a DFA.

CDM HW 4 5 of 7



3. Blowup (30)

Background
Write An for the (boring) automaton on n states whose diagram is the circulant with n nodes and strides 1 and 2.
The edges with stride 1 are labeled a and the edges with stride 2 are labeled b. For example, the following picture
shows A6. We assume I = F = Q.

a

a

a

a

a

a

b

b
b

b

b
b

Let Bn be the (interesting) automaton obtained from An by switching one of the b labels to an a label; write Kn for
the acceptance language of Bn.

Task

A. Show that determinization of Bn produces an accessible automaton B′
n of 2n states.

B. Argue that B′
n is already reduced and conclude that Kn has state complexity 2n.

Comment
The language Kn has no particular significance (as far as I know). Thinking about pebble automata might help with
the argument.

Extra credit: If you switch an a to a b, there is still full blow-up for odd n, but for even n the power automaton has
only size 2n − 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Blow-Up
Part A: Powerautomaton
For simplicity we omit subscripts and write B for the NFA. We refer to the three critical states as α, β and γ as in
the following picture:
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β

α

γ

a

a

a

a

a

a

a

b
b

b

b
b

As to intuition, action a produces a “funky rotation”: all the pebbles are rotated, but then an additional pebble is
placed on γ if there was a pebble on α. Action b removes a pebble from α, and permutes the other pebbles.

Suspicion: One should be able to remove pebbles arbitrarily while preserving other pebbles.

Here is a more formal version of this idea. Let us call a set P ⊆ Q persistent if
⋂

p∈P JpKB − JQ−P KB ̸= ∅. Thus, there
is a word in the behavior of all p ∈ P , but not in the behavior of any q /∈ P .

Claim 1: All non-empty P ⊆ Q are persistent.
Proof. Place a black pebble on each state in P , and a red pebble on all the other states. If a black pebble sits on α,
we fire an a, but we underestimate the result: assume the pebble does not split and just moves to β. The advantage
of this underestimate is that it avoids collisions and tedious bookkeeping. So, we pretend that action a induces a plain
cyclic rotation on black pebbles. Otherwise, everything moves according to the standard pebbling rules.
As long as there is a red pebble somewhere, let i minimal such that δ(P, ai) has a red pebble on α. Then fire a letter
b. This reduces the number of red pebbles, but does not affect the number of black ones. 2

Let Bop be the reversal of B.

Claim 2: For all P ⊆ Q: P is persistent iff P is reachable in Bop from Q.
Proof. Assume P is persistent and let x be a corresponding word as in claim 1. Then δop(Q, xop) = P .
On the other hand, if δop(Q, w) = P , then wop shows that P is persistent.

Here comes the nasty trick: B and Bop are isomorphic. Done by claims 1 and 2.

Part B: Minimality
Let P1 ̸= P2 ⊆ Q, say, p ∈ P1 − P2. From Claim 1 above it follows that {p} is persistent. Since P2 ⊆ Q − {p} we are
done.
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