
15-354: CDM K. Sutner

Assignment 5 Due: Oct. 4, 2024, 24:00.

1. Minimization Algorithms (40)

Background
We have seen several minimization algorithms for DFAs. Their behavior is relatively easy to understand for tally
languages L ⊆ {a}⋆. Here is a typical example of a lasso automaton A accepting a tally language.
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Task

A. Trace the execution of Moore’s algorithm on A.

B. Trace the execution of Hopcroft’s algorithm on A.

C. Trace the execution of Brzozowski’s algorithm on A.

D. What can you say about the running time of these algorithms on a general lasso DFA with transient t and period
p?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Minimization Algorithms
Part A: Moore

0 1 2 3 4 5 6 7 8
0 0 1 0 0 0 1 0 1 0
1 0 1 2 2 0 1 0 1 0
2 0 1 2 3 0 5 0 5 0
3 0 1 2 3 4 5 4 5 4

Part B: Brzozowski



Part C: Hopcroft

blocks C a−1C
0, 2, 3, 4, 6, 8 1, 5, 7 2 0, 4, 6, 8
0, 4, 6, 8 1, 5, 7 2, 3 3 1, 2
0, 4, 6, 8 5, 7 2 1 3 4 0
4, 6, 8 5, 7 2 1 3 0 3 2
4, 6, 8 5, 7 2 1 3 0 6 −

The critical block is given as an index into the current partition.
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2. The UnEqual Language (40)

Background
Consider the language of all strings of length 2k that are not of the form uu:

Lk = { uv ∈ {a, b}⋆ | |u| = |v| = k, u ̸= v }.

These languages are finite, hence trivially regular. The following table shows the state complexity of Lk up to k = 6.

k 1 2 3 4 5 6
sc 5 12 25 50 99 196

The minimal DFA for L3 looks like so (the layout algorithm is not too great):

This is the PDFA without sink, the top state is initial and the bottom state final.

Task

A. What happens when you run Moore’s algorithm on this DFA? How many rounds are there?

B. Determine all quotients for L2.

C. Generalize. In particular explain the diagram for L3.

D. Determine the state complexity of Lk.

E. Determine the state complexity of Kk = { uu | u ∈ {a, b}k }.

Comment
From the diagram and the table it is not hard to conjecture a reasonable closed form for the state complexity. For a
proof one can exploit the description of the minimal DFA in terms of quotients.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: The Un-Equal Language
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Part A: Moore
Initially, there are just two classes: the final state and everybody else (including the sink). In round 1, the 3 states
above the final state split off, then the ones at the next higher level, and so on: in each round the next higher level in
the graph becomes separated. In the last round, the sink also separates from everybody else.
Hence, after 6 rounds, all blocks are just singletons; the machine is already minimal.

Part B: Quotients L2

The quotients of L2 organized by length of the quotient string:

0 L2

1 (aab, aba, abb, baa, bba, bbb), (aaa, aab, abb, baa, bab, bba)
2 (ab, ba, bb), (aa, ba, bb), (aa, ab, bb), (aa, ab, ba)
3 (a), (b), (a, b)
4 (ϵ)
5 ∅

Part C: Quotients
Ignoring the sink, states are organized in layers, at layer ℓ we have x−1Lk = P ⊆ {a, b}2k−ℓ where |x| = ℓ. In particular
for ℓ = k we have u−1Lk = {a, b}k − {u} and the structure of the quotient automaton down to level k is a complete
binary tree; the number of states in this part is 2k+1 − 1.
The remainder of the machine has two kinds of states: those where a witness for inequality of u and v has already
been found, and those where we are still waiting for such a witness.
Fix some u ∈ {a, b}k. The first type of state is of the form δ(q0, ux) where x is not a prefix of u and has behavior
{a, b}k−|x|, where |x| ≤ k. The second type is of the form δ(q0, ux) where x is a prefix of u and has behavior
{a, b}k−|x| − {y} where u = xy. But then there are k states of the first type, and 2k − 1 states of the second type
(these form another tree which is upside-down compared to the first, and has as root the sink of the DFA).

Part D: State Complexity
It follows from the analysis in part (B) that the state complexity of Lk is 3 · 2k + k − 2.

Part E: Repetitions
The state complexity of Kk is 3 · 2k − 1.
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3. Syntactic Semigroups (40)

Background
The standard measure of complexity of a regular language L is the number of states of its minimal DFA ML.
Recall the syntactic congruence ≡L of a language L:

u ≡L v ⇐⇒ ∀ x, y ∈ Σ⋆
(
L(xuy) = L(xvy)

)
The syntactic semigroup of L is the quotient Σ+/≡L and is finite iff L is recognizable.
Computing the equivalence classes directly from the definition is quite cumbersome, but we can exploit the minimal
DFA for L: u ≡L v iff δu = δv.

Task
Fix the alphabet Σ = {a, b}⋆.

A. Compute the syntactic semigroup of L = {aab} over alphabet {a, b}.

B. Compute the syntactic semigroup of L = {ab}⋆ over alphabet {a, b}.

C. Prove that u ≡L v iff δu = δv.

Comment
Part (A) is pretty straightforward. For part (B), use whatever argument/trick you can come up with, the result is
rather messy (there are 11 classes).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Solution: Syntactic Semigroups
Part A: aab

Here is the PDFA for L (add a sink 5 to get the minimal DFA).

1 2 3 4

By composition we get all transition functions:

x δx

a 2, 3, 5, 5, 5
b 5, 5, 4, 5, 5
aa 3, 5, 5, 5, 5
ab 5, 4, 5, 5, 5
aab 4, 5, 5, 5, 5
ba 5, 5, 5, 5, 5
bb δaaa = δaabs = δba

Hence all 5 factors of aab are equivalent only to themselves, all non-factors are equivalent.

Part B: aab Star
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The possible transition functions here are

a 2, 3, 4, 4 aab 1, 4, 4, 4
b 4, 4, 4, 1 aba 4, 2, 4, 4
aa 3, 4, 4, 4 baa 4, 4, 4, 3
ab 4, 1, 4, 4 aaba 2, 4, 4, 4
ba 4, 4, 4, 2 abaa 4, 3, 4, 4
bb 4, 4, 4, 4

Write L′ = (aba)⋆ and L′′ = (baa)⋆ for the “rotations” of L. This produces the 11 equivalence classes

[a] = {a} [aba] = abaL′

[b] = bL [baa] = baaL′′

[aa] = aaL′′ [aaba] = aabaL′

[ab] = abL [abaa] = abaaL′′

[ba] = baL′ [bb] = everything else
[aab] = aabL

Part C: Paths
Membership in L easily translates into path existence assertions in ML:

u ≡L v ⇐⇒ ∀ x, y ∈ Σ⋆
(
L(xuy) = L(xvy)

)
⇐⇒ ∀ x, y ∈ Σ⋆

(
xuy ∈ Jq0K ⇔ xvy ∈ Jq0K

)
⇐⇒ ∀ x, y ∈ Σ⋆

(
uy ∈ Jδx(q0)K ⇔ vy ∈ Jδx(q0)K

)
Using accessibility and reducedness:

⇐⇒ ∀ p ∈ Q, y ∈ Σ⋆
(
uy ∈ JpK ⇔ vy ∈ JpK

)
⇐⇒ ∀ p ∈ Q

(
Jδu(p)K = Jδv(p)K

)
⇐⇒ δu = δu

Thus, two maps δu and δv in the transition semigroup agree iff u ≡L v.
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