15-354: Computational Discrete Math K. Sutner

CDM Projects Fall 2024

Proposal Deadline
Email me a brief description of your choice of project and some preliminary thoughts about what you are
going to do by Monday, November 25.

If you plan to partner with someone, submit just one solution.

AFS Directories
All submissions will be to directories
/afs/andrew.cmu.edu/course/15/354/handin/<andrew-id>

There is plenty of space, but do not submit gigabytes of data.

What To Do

By university policy, the official deadline for all projects is the last day of classes, December 7, 24:00.
Grades are due 12/18 and the class is small, so I can handle late submissions. Talk to me if 12/07 does not
work for you. Place you tgz file into the AFS directory above, see below for specs. Your submission will
contain multiple files, possibly including pdf, code, sample data files, and so on—make sure that everything
is nicely organized. Submit a file cdm-john-doe.tgz and include a text file info.txt that explains the
file structure of your submission (and anything else you want me to know). If there is code, make sure it
compiles under a standard Andrew linux environment—no compile, no credit. I am not going to edit code in
order to get it to compile, and I am not going to install special software to get things to work.

If you project is a paper report, your tgz file should unpack like so:

cdm-john-doe

wm info.txt

m report.pdf

N /doc

Supporting documents (and in particular the paper under review) go into /doc.

If your project involves code, adhere to the following subdirectory structure. Make sure to provide compelling
examples in /dat, if it is not obvious how to construct more examples I will assume that your code fails in
general. Your .tgz file must unpack like this:

/afs/andrew.cmu.edu/course/15/354/handin/<andrew-id>

cdm-john-doe
g info.txt

m /doc

m /Src

m /bin

N /dat

Put a ready-made executable into /bin, just in case compilation somehow fails.

Some of the projects below can be handled essentially without recourse to the literature, others involve some
reading. Do not procrastinate.

There is no need to prove new results. Of course, it’s fantastic if you do come up with something new, but
it is not required. You are expected to demonstrate a clear understanding of the issues and the ability to
describe the problem and its solution.

For some of the larger projects you may think about pairing up with someone. For example, the universal
Turing machine problem and the Ehrenfeucht-Mycielsky sequence are best handled with a partner.

If you have a proposal for an alternate topic, make sure to talk to me before you start working—not all topics
are suitable.

As you will see, the projects have inherently different levels of difficulty; obviously, if you choose a simple
project, you will be expected to produce a particularly nice solution. On the other hand, if you go after one
of the hard questions, don’t worry if there is no breakthrough, just do the best you can (welcome to the
world of research).

If you have any question, talk to us, don’t just start out on a wild goose chase.

Paper Reports

For a report, you can read any of the papers I mentioned in class; for example, the Elgot and Mezei paper on
transducers, the Rabin/Scott classic, Kleene’s paper on regular events. Take a look at projects. Explain the
central ideas and contributions in the paper. In particular, explain the proofs and, wherever appropriate,
provide examples for the given constructions. Think of this like being on a program committee: someone
who reads your report should have a good idea of what is going on in the paper, and should be well-prepared
to read and understand the actual paper.

In addition to the papers mentioned in class, you can also pick a recent research paper. To keep things under
control, let us limit the range of papers to conference proceedings of ICALP, CIAA, DCFS, LATA, FOCS
and STACS for the last 8 years. Not all the papers here relate to CDM, pick one that does. If you have
some other paper in mind, talk to me asap.

These projects are solo exercises, pick a paper that is manageable. If there is a clash (highly unlikely), it
will be resolved on first-come first-serve basis. It is a good idea to start looking for a suitable paper right
now, and spend a bit of time making a good choice.

Your paper should roughly be organized like so:

o Introduction: what is the topic, why is it interesting, what is the state of the art.
e Contribution: what is the specific contribution of this paper.

e Theorems & Proofs: what are the technical results and how are they established, in particular: is
everything correct?

o Critique: is the paper well-written, could it be easily improved (e.g. by including examples), are the
computational parts reproducible, is the bibliography sufficient?

Take item (3) seriously, just because a result is published does not necessarily mean that it is quite correct.
After reading your analysis of the paper, it should be quite straightforward for a mathematically literate
reader to go through the actual paper.

http://www.cs.cmu.edu/~cdm/projects/

Specific Projects

e Cycle Finding Algorithms

Floyd’s algorithm is just one example of a memoryless cycle finding algorithm. Implement a number
of these algorithms and compare their performance. A good test case are the 256 elementary cellular
automata. Try to compute transients and periods for n-bit configurations for n as large as possible
and try to classify ECAs accordingly. Long transients and periods are particularly interesting (e.g.,
the pseudo-random number generator ECA 30 should have very long periods).

o Universal Register Machine

Construct a complete URM, without using the macros from lecture. You might want to write a
small compiler that translates the version using macros into a real register machine. Try to make
the resulting machine as small as possible and demonstrate its correctness by simulating a few small
register machines.

To make interesting simulations feasible, you need to write an “intelligent” interpreter: analyze cycles
in the diagram of the machine and speed up their execution by performing giant-steps rather than
baby-steps.

The deliverable must be useful for demonstrations: I want to be able to show an actual universal
computer perform simple tasks such as addition or perhaps multiplication.

Your code must run on a standard Andrew linux box, specialized software is not acceptable.

e« SAT Solver

The Satisfiability problem for propositional logic (rather than first-order logic) is obviously decidable,
though it is currently no known whether it can be handled in polynomial time. Implement a simple
SAT solver along the lines of the classical Davis/Putnam algorithm DPLL. The point here is not
blinding speed but easy traceability. For example, it should be easy to demonstrate the effect of
various heuristics in the splitting case.

You can check your algorithm against one of the performers in the SAT competition SAT Competition.
This is(for correctness only, not for speed; the latter will only lead to depression on your part.

e Divisibility and Minimal DFAs
Determine the size of the minimal DFA recognizing all multiples of a fixed modulus m in various
numeration systems. This has been done for normal radix notation and reverse radix, but the results
can probably be improved upon, see Divisibility.

e A Small “Universal” Turing Machine

There is a claim that a 2-state/3-symbols Turing machine can already be universal, see

— 2-3-Turing Machine,

— 2-3-TM Prize,

— 2-3-TM Proof.
As you will see, the alleged proof by Alex Smith has lots and lots of holes, see for example the objections
raised at FOM linked at the wiki site.

The ultimate goal here is to determine whether Smith’s argument holds water. This is probably too
hard, so any significant progress towards a resolution will count. For example, a clean and mathemat-
ically precise version of the construction would already be of interest.

https://en.wikipedia.org/wiki/DPLL_algorithm
http://www.satcompetition.org/
http://www.cs.cmu.edu/~cdm/projects/divisibility.pdf
http://en.wikipedia.org/wiki/Wolfram%27s_2-state_3-symbol_Turing_machine
http://www.wolframscience.com/prizes/tm23/index.html
http://www.cs.cmu.edu/~cdm/projects/TM23Proof.pdf

e Presburger Arithmetic

Build a decision algorithm for Presburger Arithmetic. There are two parts to this: first, a small library
of finite state machine operations that are needed to carry out the constructions on synchronous
transducers. Second, an interface that translates a formula into the corresponding machines. This part
is optional, if you have a reasonable way to call your library either from the command line or from,
say, Python, the user can handle the necessary translation.

As a benchmark, your algorithm should have no problem with the Frobenius problem that we discussed.

e ECA and k-Cycles

Consider the automatic structure (X*; —) where the next step relation is given by an elementary cel-
lular automaton, assuming periodic boundary conditions. Adapt the decision algorithm for automatic
structures to handle the problem of finding k-cycles.

This is somewhat easier than Presburger since the corresponding transductions are length-preserving,
the challenge here is to handle “large” values of k up to, say, 20.

On input a rule number 7, 0 < r < 256, and some cycle length k, your algorithm should return the
semilinear set that describes the grid sizes n for which a k-cycle exists.

o Busy Beaver

There has recently been some amazing progress on the infamous Busy Beaver problem for 5 states, see
BB-5 and Busy Beaver.

Give a description of the new results, the methods used and evaluate them with a view towards the
criticism of earlier efforts in Harland’s paper.

o AES

Implement AES. The goal here is not to produce anything resembling a serious implementation, speed
and throughput are irrelevant. Instead, the code has to be useful to demonstrate the behavior of the
algorithm, or at least a watered-down version of it. To this end, the implementation must be easily
modifiable and produce nice traces, so the only plausible languages are Python and Mathematica.

Again, there is no need to try to streamline things. E.g., the required finite field operations can be as
hamfisted as imaginable. Alternatively, use some finite field library as a black box.
e Dropping Balls

There is an old single-player game dating back to the 1960s that has a nice explanation in terms of
group actions, see Trellis Automata.

The first three questions in the reference are quite manageable, but the last one (generalize to other
trellises) is utterly open-ended.

e The Computational Universe and the Bergers

N.J. Wildberger is a mathematician in Australia, who has a few rather unorthodox ideas that relate
to our quest for computational interpretations of mathematics. E.g., he does not believe in the fun-
damental theorem of algebra, which he likes to refer to as the “fundamental dream of algebra.” His
youtube videos seem to be unavailable at this point, take a look at Wildberger.

D. Zeilberger at Rutgers has similarly voiced somewhat contentious ideas, some constructive, some not
so much. In particular his paper Zeilberger titled “What is Mathematics and What Should it Be?” is
pushing things a bit too far.

Familiarize yourself with some of their ideas and write a critique.

https://www.quantamagazine.org/amateur-mathematicians-find-fifth-busy-beaver-turing-machine-20240702/
http://www.cs.cmu.edu/~cdm/projects/BusyBeaver
http://www.cs.cmu.edu/~cdm/projects/trellis-problem.pdf
https://njwildberger.com/
http://www.cs.cmu.edu/~cdm/projects/Zeilberger2017-what-is-math.pdf

o Ehrenfeucht-Mycielsky Sequence

The authors defined a deceptively simple infinite binary sequence that apparently has limiting density
1/2. In fact, computing a few million bits of the sequences shows very rapid convergence. Unfortunately,

no proof is known though lots of little facts have been unearthed by a number of people, see EM-
sequence and the web.

Try to make a dent in this problem (don’t aim for a full proof, it’s probably quite hard).
« ECA 30

Elementary cellular automaton number 30 has amazing properties, it seems to generate random pat-
terns.

; ?’j&a:jﬁé‘% h_‘---:r‘-...cJ Tor

A T g]i ek
f".":}‘:;i;f i ﬁ:r-'""ﬂ%j'h

T T

oy

You can earn real money ($30,000) by solving some concrete questions related to ECA 30, see ECA
30. This is probably quite hard, but if you think you might want to take a swipe at it, talk to me first
(I am on the prize committee).

http://www.cs.cmu.edu/~cdm/projects/em-sequence.pdf
http://www.cs.cmu.edu/~cdm/projects/em-sequence.pdf
https://www.rule30prize.org/
https://www.rule30prize.org/

