CDM

Primitive Recursion

KLAUS SUTNER

CARNEGIE MELLON UNIVERSITY
SPRING 2021

D080

Coding the World

Pairing Systems

Coding Systems

*Digression: Godel’s S Function

Faking Data structures

Our primitive recursive programming language has one glaring defect: it only
supports one data type, N. There are no lists, trees, graphs, hash tables and so
on, only natural numbers.

As it turns out, all these discrete structures can be obtained from just integers
if we are able to express sequences a1, az,...,a, of numbers as a single
number (ai,asz,...,an).

This is obviously not meant as a practical programming idea, it is purely
conceptual: natural numbers already suffice in principle, and the ability to
compute with them means that other computation involving, say, list, are also
possible.

Algorithms in the RealWorld™

We claim that any algorithm you will ever see, outside of a class dealing
directly with logic and computability, is always primitive recursive. And, in fact,
often trivially so.

There are two parts to this claim:

@ All these algorithms operate on finitary data structures that can be coded
as natural numbers, and

@ given this coding, for input as well as output, the corresponding functions

are always primitive recursive.

Of course, there is no actual theorem here, just an observation. I'd be most
curious to hear about anything that might contradict this claim®.

*I will change my definition of RealWorld™

Leopold Kronecker, Semi-Constructivist

Die ganzen Zahlen hat der liebe Gott
gemacht, alles andere ist Menschenwerk.

“Dear god” made the integers, everything
else is the work of men.

Coding

Write N* for the set of all finite sequences of natural numbers and nil for the
empty sequence.

To express a sequence az,...,a, € N* as a single number (a1,...,ax,), we
need a coding function, a polyadic injective map of the form

(y:N" >N

that allows us to decode: from b = (a1,...,a,) we can recover n as well as all
the Q.

From the perspective of set theory this is trivial, but we interested in operations
that are computationally cheap, at least primitive recursive.

That’s It!

We can now code any discrete structure as an integer by expressing it as a
nested list of natural numbers, and then applying the coding function.

For example, the so-called Petersen graph on the left is given by its edge list
the nested list of naturals on the right.

((1,3),(1,4),(2,4),(2,5),(3,5),
(6,7),(7,8),(8,9), (9, 10), (6, 10),
2), (4,9

(
(1,6),(2,7),(3,8), (4,9), (5,10))

Codes

In a coding system discussed below, the edges have code numbers

34,66, 258,132, 260, 1028, 520, 4104, 16400,
65568, 16448,131136, 65664, 262400, 1049088

The code number of the last sequence is about
3.210742533937650 x 10*8°%97

and has almost half a million digits.

This has nothing to do with the desing of efficient data structures, it is a tool
to explore the power and limits of computation.

2 Pairing Systems

Pairing Functions

Definition
A pairing system consists of
@ an injective function 7 : N X N — N, the pairing function
o functions m; : N — N, ¢ = 1,2, the unpairing functions
where 7;(m(21,x2)) = x; for all z;.

The system is primitive recursive if the paring and unpairing functions as well
as the range of the pairing function are all primitive recursive.

The unpairing functions are only of interest only on the range of 7; we will
generally assume that they are 0 everywhere else.

Note that this is not a problem for primitive recursive systems.

Orderings 10

Note that any pairing function induces a total order on N x N:
(a,b) < (a',b") <= m(a,b) < n(a’,b")
This provides a convenient method to construct pairing functions: find some

reasonable ordering on N x N and then engineer a corresponding function.

We would like the function to be primitive recursive, so the ordering should be
fairly straightforward.

Cantor 11

For example, we could define the order to be
(a,b) < (a',b") <= (at+b<a'+b)V
((a+b =a'+b' A(a,b) <, (d, b/))
Here <, refers to the usual product order. So the first few pairs are

(0,0),(0,1),(1,0),(0,2),(1,1),(2,0),(0,3),(1,2),(2,1),(3,0),...

The corresponding pairing function is a simple quadratic polynomial:
m(z,y) = ((z+y)* + 32 +y)/2

Note that this function is actually a bijection.

Picture

12

Exercises

Exercise

Explain the Cantor polynomial and show that function is indeed a bijection.

Exercise

Find simple descriptions for the corresponding unpairing functions.

Exercise

Show that the unpairing functions are primitive recursive.

13

Aside: Fueter-Pdélya 14

A surprising theorem by Fueter and Pélya from 1923 states that, up to a swap
of variables, this is the only quadratic polynomial that defines a bijection
N? < N.

The proof is rather difficult and uses the fact that e is transcendental for
algebraic a # 0.

It is an open problem whether there are other bijections for higher degree
polynomials.

Extra Credit.

Another Pairing Function

We could replace sum by max in the pair ordering:

(a,b) < (a',b") <= (max(a,d) < max(a’,t"))V
(max(a, b) = max(a’,b") A (a,b) <p (', b/))

Again, <, refers to the usual product order. he first few pairs this time are

(0,0),(0,1),(1,0),(1,1),(0,2),(1,2),(2,0),(2,1),(2,2),(0,3), ...

Somewhat similar to the last pairing function, but the picture looks quite
different.

15

Picture

16

Exercises

Exercise
Find the pairing function for the last order.

Exercise

Then determine the corresponding unpairing functions.

Exercise
Show that the unpairing functions are primitive recursive.

17

Even/Odd 18

The last two pairing functions are inspired by pair orderings. Then next one is
based on basic arithmetic instead: decomposing a number into an even and on
odd part.

m(z,y) =2°(2y + 1)
Hence the range of 7 is N4 (but not N). The pairs this time look like so:

(0,0),(1,0),(0,1),(2,0),(0,2), (1,1),(0,3), (3,0), (0,4), (1, 2), ...

Much less intuitive than the previous cases.

Binary

To see why this pairing function is still quite natural consider the numbers in
binary. For example

m(5,27) = 3255 = 1760 = 110111 000002

In general, the binary expansion of 7(z,y) looks like so:

~1...90100...0
YelYk—1 Yo

z

where yryr—1 ... Yo is the standard binary expansion of y (yx is the most
significant digit).

Exercise

Find the corresponding unpairing functions.

19

Picture (log plot)

20

3 Coding Systems

Coding Systems 22

Definition
A coding system consists of three functions
():N* >N
len: N —- N
dec:NXxN— N

For b = (a1, a2,...,a,) we have n = len(b) and dec(b,?) = a; for all i € [n].

(.) is polyadic and called the coding function, len is the length function, and
dec is the decoding function. The range Seq of the coding function is the set
of sequence numbers.

Seq may be equal to N, but in general it will not be.

Decoding

To be more explicit about the decoding process, suppose
b= <CL1,CL2, .. ~7an>

is some sequence number. Then we can recover the length of the sequence via
len(d) =n
and the actual entries via that extracts the components:
dec(b,i) = a;
foralli=0,...,n—1.

For simplicity we assume that len and dec are 0 outside of their relevant
domain of definition.

23

Computable Coding 24

Definition
A coding system is primitive recursive if the length and decoding functions, and
the sequence numbers are all primitive recursive.

Note that the coding function itself is polyadic, and thus cannot be primitive
recursive. In all interesting cases, the restrictions

(y:N" - N

will be primitive recursive, though.

So the challenge is to come up with well-behaved primitive recursive coding
systems.

Sequence Numbers

Exercise

Show how to check if a number is a sequence number given dec and len.

25

Extending Pairs

Suppose we have a pairing system. The first step is to extend the pairing
function 7 to a map 7 that is defined on all sequences of length at least 2:

7:N>? &N
This comes down to declaring 7 to be, say, right associative:

(w1, T2) (z1,22)

=7
T(z1, T2, ..., 2k) = T(T1, (T2, . . ., Tk))

Note that this map is not injective: let ¢ = 7(a,b), then 7(a,c) = 7(a, a, b).

26

Length Encoding

To avoid this issue, define

(nil) == m(0,0)
(a) ==7(1,a)
{a1,...,an) = 7(n,m(az,...,a.))

Here are some sequence numbers for this particular coding function:

(10) = 1024
(0,0,0) =7
(1,2,3,4,5) = 532754

27

It’s Decodable

Lemma
(.) : N* — N is injective.

Proof. Suppose
(al,...,a1> =Cc= <b1,...,bm>

Since 71 (c) is the length of the sequence we can conclude that n = m.

But then 7(a1,...,as) = 7(b1,...,b,) and it follows that a; = b;.

28

Sans Length

Recall the even/odd pairing function

m(z,y) =2 2y + 1)

The range here is N, so we don’t have a bijection. As it turns out, we can
exploit this produce a rather elegant coding function:

(nil) =0
(a1,...,an) =m(a1,{az,...,an)) J

29

It’s Decodable

Lemma
(.) : N* — N is bijective.

Proof. Suppose
(a1y.. . an) =c=(b1,...,bm)

We may safely assume that n < m. If n =0, then ¢ =0 and it follows that
m = 0 because the range of m does not contain 0.

So suppose 0 < ¢, 0 < n < m. Since the range of 7 is all of N1 we have
a1 = 7w1(c) = by, furthermore (az,...,an) = m2(c) = (b2,...,bn).

Done by induction.

30

Less formally ... 31

Here is a sequence number and its binary expansion:

(2,3,5,1) = 20548

=1_0 1000001 000 1 00

So the number of 1's (the digitsum) is just the length of the sequence, and the
spacing between the 1's indicates the actual numerical values.

It follows that the coding function is injective and surjective, right?

Everything is PR 32

Exercise

Show that the pairing function 7 and both unpairing functions © = 71 (7 (z,y))
and y = wa(m(x,y)) are primitive recursive.

Exercise

Show that the length and decoding functions len and dec are primitive
recursive.

Exercise

Show that the coding function (.) is primitive recursive when restricted to
inputs of fixed length.

4 *Digression: Godel’s 5 Function

Recording History 34

Traditionally, one uses 0-indexing for sequence numbers: {ag,...,an—1) so that
the decoding function takes the form dec(b,), i < n. Also, dec(b,) is written

(b);.

One neat application of sequence numbers is course-of-value recursion. First
note that ordinary primitive recursion can be expressed in terms of sequence
numbers like so:

flz,y) == <=>E|s€Seq(Ien(s):x+/\

(s)o=g(y) A
Vi<ax ((S)fr = h(lv (S)’Hy)) A
(8)e = 2)

Here 2T is shorthand for z + 1. The sequence number s simply records all
previous values of f.

Course of Value Recursion

Now consider the following function associated with f:

~

f(x,y) = <f(07y)7 f(lvy)v ce- 7f(x7y)>

Lemma

A
f is primitive recursive iff f is primitive recursive.

Thus, it is natural to generalize the primitive recursion scheme slightly by
defining functions so that the value at x depends directly on all the previous
values.

f(0,y) = g(y)
f@t,y) = H(z, f(z,9),y)

Lemma

If g and H are primitive recursive then f is also primitive recursive.

35

Godel’s Approach

This line of reasoning appeared first in Godel's seminal 1931 paper establishing
the incompleteness theorem.

For the sake of completeness, here is a brief description of Godel's method.

36

Godel’s 5 Function

The full sequence number machinery is not needed for course-of-value
recursion. We can get away with a function

B(z,y,2) = v mod y(z +1) + 1

Leaving off the parameters, let f(0) = «, f(z¥) = h(z, f(x)). Then one can
use [to express the recursion:

flz) =2z <= EIu,v(,B(u,v,O):a/\

Vi< (B(u,v,iT) = h(i, Blu,v,4))) A
B(u,v,) :z)

37

Godel’s Coding Function 38

3 suffices to encode sequences. Here is an eloboration of this idea.

Lemma (Godel)

There exists a primitive recursive function dec : N> — N such that

Vao,...,an—13aVi < n(a; = dec(a,?)).

So a is a potential code number for ag,...,an—1
Proof. Set

dec(a,i) = min(m <a| (wz(a)(w(x,i) +1)+ 1) divides 71'1((1))
Think of a = 7(u,v), then

Bu,v, w(x,i)) =0

We need to establish the existence of the witness a.

Proof, contd.

Let ao,...,an—1 arbitrary and set

c:max(w(ai,i) | i< n)

C=(c—-1)!
p=[l @@+ +1)
a=m(p,C)

Note that Vi< j <c(¢C+1,5C + 1 coprime).
But then
dec(a, i) = min(:c <a|C(n(z,i) + 1)+ 1 divides p)
= min(x <al|Bp,C,m(x,i)) = 0)

Sequence Numbers 40

Definition
Define a coding function (.) by

(x) = min(a | dec(a,0) = n A Vi € [n] (dec(a,) = ai))

Then the length of a sequence is dec(a,0). As usual, {.) is not primitive
recursive, but nearly so:

@ Seq = {(x) | « € N* } C N is primitive recursive.

@ The restriction to N™ is primitive recursive.

@ dec is primitive recursive.

PRec Bijections 41

Theorem (Kuznecov 1950)

The class of primitive recursive bijections on N is not closed under inverse.

Proof. Define the Ackermann-like function

By(z) =2z
B+ (z) = B, (1)
B(z) = Bz(x)

It follows from monotonicity that the predicate "By (x) = y" is primitive
recursive, uniformly in n, z, y.

Contd. 42

Let R be the range of B : N — N, so R is infinite, co-infinite and primitive
recursive. Note that R is very sparse thanks to the insane growth of B.

Let Hx be the Hauptfunktion of X C N and define f: N — N

(@) 2H," (z) if z € R,
f(z) =
2H_"(z) +1 otherwise.

Then f is an primitive recursive bijection, but f~! fails to be primitive
recursive.

Exercises 43

Exercise

Prove that all these functions are indeed primitive recursive.

Exercise
Explain how to implement search in binary search trees as a primitive recursive
operation.

Exercise

Come up with yet another coding function based on repeated application of a
pairing function (make sure your method really works).

	Coding the World
	Pairing Systems
	Coding Systems
	*Digression: Gödel's Function

