
CDM
Loop Programs

Klaus Sutner
Carnegie Mellon University

1 Rudimentary and Elementary Functions

2 LOOP Programs

3 Program Equivalence

Program Equivalence 2

Primitive recursive functions are easily computable, at least as a matter
of principle. But obviously they are quite far removed from anything
resembling practically computable functions – the time and space
requirements are too high to allow for execution on any physically
realistic machine.

Another issue is that it is very difficult to verify properties of primitive
recursive functions.
For example, it is undecidable whether two primitive recursive programs
P1 and P2 (of the same arity) determine the same function:

JP1K = JP2K

Why should one care?

Program Transformations 3

It is a standard technique to optimize programs by applying certain
(presumably admissible) transformations to the source code. For
example, index manipulations for array variables within loops are a good
candidate for optimization.
If the optimizations are done by hand by a programmer it would be most
desirable to be able to verify their correctness: the resulting program
should have the same input/output behavior/
Of course, it would also be nice to be able to show some kind of
optimality, but we’ll ignore this issue.

So the question is: are there any interesting classes of computable
functions for which the Equivalence Problem is decidable?

We need to scale back significantly from primitive recursive functions.

Rudimentary Functions 4

Here is another clone of simple number-theoretic functions Nn → N.
Compared to primitive recursive functions, we allow more basic functions
but require no admissible operations other than just composition.

Definition
A function is rudimentary if it is a member of the least clone containing
constants 0, 1, addition, predecessor, division and remainder with fixed
modulus, and an if-then function.

Predecessor means

π(x) =
{

x − 1 if x > 0,
0 otherwise.

The Clone 5

By an if-then function we mean the following:

W (x, y) =
{

y if x > 0,
0 otherwise.

This is similar to the classical question-mark operator in the C
programming language (the third argument is fixed to 0 in this case):
x ? y : 0.

In other words, the rudimentary functions are the clone

clone(0, 1, +, π, . div m, . mod m, W ;)

Rudimentary Programs 6

The last definition is in terms of a class of functions.

Alternatively, we can introduce a small programming language that
allows one to write programs for precisely the rudimentary functions.
Informally, here are the building-blocks for this language. We assume all
variables are ranging over N, and we assume constants 0 and 1.

addition x + y
predecessor x •− 1
remainder x mod c
division x div c
which if x > 0 then y else 0

assignments x = expression
sequential composition P ; Q

Rudimentary Programs, contd. 7

Nota bene:

The two-variable modulus operation x mod y is not allowed; rather,
the second argument must be a constant.

There are no loop constructs, nor is there recursion of any kind.

How about semantics? We need a “meaning” JP K for each rudimentary
program.
Since rudimentary programs involve variables this is slightly more painful.
Let V = {x1, x2, . . . , xk} be the collection of all variables in a program.
Define an environment to be a binding E : V → N of numbers to all
variables.

Semantics for Terms 8

For each term t in the language and any environment E we can define
the value JtKE by induction on the structure of t:

J0/1KE = 0/1

Js + tKE = JsKE + JtKE

Js •− tKE = JsKE
•− JtKE

Js mod cKE = JsKE mod JcKE

Js div cKE = JsKE div JcKE

JW (s, t))KE = JtKE if JsK > 0, 0 otherwise.

Semantics for Programs 9

For a rudimentary program we define its meaning to be a map from
environments to environments as follows:

Jx = tK(E) = E[JtKE/x]

JP ; QK(E) = JQK(JP K(E))

To associate a rudimentary program with an arithmetic function Nn → N
we need to designate some variables for input and output. One also
should adopt some conventions about initialization to avoid partial
functions (say, all variables are initially 0). The details are slightly tedious
but quite straightforward.
At any rate, a function f is rudimentary iff there is a rudimentary
program P such that JP K = f .

Exercise
Give a formal definition of the semantics of a rudimentary program.

Generalized Mods 10

As an example, consider the generalized mod function

x mod (t, p) =
{

x if x < t,
t + (x − t) mod p otherwise.

This describes the position of a particle moving along an ultimately
periodic orbit of transient length t ≥ 0 and period p > 0.

A Rudimentary Program 11

Here is a program that computes the generalized mod; x is the input
variable and z the output variable.

s0 = x - (t-1);
s1 = 1 - s0;
xx = s0 - 1;
z0 = s0 ? t + xx mod p : 0;
z1 = s1 ? x : 0;
z = z0 + z1;

Note that the first line is just an abbreviation; we should really set
s0 = x; followed by t − 1 decrement operations s0 = s0 - 1;

Exercises 12

Exercise
Prove that the generalized mod program above works as claimed.

Exercise
Show that if-then-else is an admissible construct in rudimentary programs
(which could be used to slightly simplify the generalized mod program).
Find some other admissible constructs.

Floyd’s Trick 13

Recall Floyd’s cycle finding algorithm: given a function f on a finite set
A and a point a ∈ A one can find a point on the limit cycle of the orbit
of a by calculating the least r > 0 such that

fr(a) = f2r(a)

The computation is memoryless (at least if we assume that the objects in
A have constant size).

Writing t for the transient length of the orbit of a and p for the period
length we are looking for the least r > 0 such that

r = 2r mod (t, p)

How About Multiplication? 14

Surely, rudimentary functions are easily computable – but it would seem
they are a bit too feeble to cover everything that is needed in a real-world
application.

For example, multiplication is conspicuously absent from the list of basic
rudimentary functions. Could there be a rudimentary program that
computes multiplication?

Intuitively, the answer should be “No”: we have no loop construct, so
there seems to be no way to repeatedly apply addition to simulate
multiplication.

Of course, that’s a plausibility argument, not a proof.

Affine Bounds 15

We can produce linear (actually, affine) functions such as

(x, y) 7→ 2x + 3y + 5.

Using mods can generate periodic behavior and the if-then construct can
be used to produce arbitrary values at finitely many places. Still, it
appears that we cannot get more than eventually piecewise linear
functions. So multiplication should not be rudimentary.

Lemma
For every rudimentary function f : Nn → N there are constants
c0, . . . , cn such that

f(x1, . . . , xn) ≤ c0 +
∑

i

cixi.

Proof 16

Proof is by structural induction on f .

The claim is easily verified for the basic functions.

If f is obtained by composition, the only interesting case is f = g + h.
But then the affine bounds for g and h can be combined to yield an
affine bound for f .

2

Multiplication is not Rudimentary 17

Corollary
Multiplication is not rudimentary.

Elementary Functions 18

Clearly, multiplication must be included in any practical collection of
easily computable number-theoretic functions.

Definition (Kalmár 1943)
A function is elementary if it is an element of the least clone containing
constants 0, 1, addition, proper subtraction, bounded sums and bounded
products.

So we are dealing with

clone(0, 1, +,
•−;

∑
bnd

,
∏
bnd

)

Bounded Sums/Products 19

The bounded sum/product operators are defined like so:

f(x, y) =
∑
z<x

g(z, y)

f(x, y) =
∏
z<x

g(z, y)

Elementary functions turn out to be powerful enough to deal with most
“practical” problems, in particular they are much more powerful than
rudimentary functions. Still, they are far weaker than primitive recursive
functions in general.

Some Elementary Functions 20

While multiplication is absent from the definition, it is easily
implemented as an elementary function:

x · y =
∑
z<x

y.

Likewise, exponentiation is

yx =
∏
z<x

y,

so that exponential polynomials are also elementary. Note, though, that
it is not so clear that one can continue on to super-exponentiation,
super-super-exponentiation, and so on.

Exercises 21

Exercise
Explain what definition by cases means for elementary functions and
show that this operation is admissible.

Exercise
Show that quotients and remainders are elementary (as two-variable
functions).

Bounding Elementary Functions 22

So how would we go about showing that some function fails to be
elementary? Following the method that worked for rudimentary functions
it is tempting to find a nice bound. We can simplify the n-dimensional
input a bit by considering the largest component:

f(x) ≤ . . . max x . . .

where max x = max
(

xi | i = 1, . . . , n
)
.

This time it is a bit more difficult to come up with the right bound.

Super-Exponentiation 23

Define super-exponentiation as follows:

2↑(0, z) = z

2↑(k + 1, z) = 22↑(k,z)

Lemma
For every elementary function f there is some k such that

f(x) ≤ 2↑(k, max x)

Corollary
The function 2↑k = 2↑(k, 0) is not elementary.

1 Rudimentary and Elementary Functions

2 LOOP Programs

3 Program Equivalence

A General Framework: LOOP Programs 25

We have seen three classes of “easily computable” number-theoretic
functions: rudimentary, elementary and primitive recursive. There is a
nice uniform description for all of these using a rather natural, loop-based
programming language.

Again variables range over N, and we have a single constant 0. The
programs are described informally as follows:

reset x = 0
increment x = x + 1
assignments x = y
sequential composition P ; Q
control do x : P od

Note that there are no arithmetic operations, no conditionals, no
subroutines, . . .

The Loops 26

The semantics are clear except for the loop construct:
do x : P od

This is intended to mean:
Execute P exactly n times where n is the value of x before the
loop is entered.

In other words, if P changes the value of x the number of executions will
still be the same. We could get the same effect by not allowing x to
appear in P . It follows that all loop programs terminate, regardless of the
input.

Note that this would not be true for while-loops. As we will see,
while-loops are significantly more powerful than our do-loops.

Here are some typical examples for the use of loops.

LOOP Addition 27

Addition and multiplication are not a primitive operation, but are easy to
implement addition in a LOOP program. We indicate input and output
variables in a comment line:

1 // add : x, y --> z
2 z = x;
3 do y :
4 z = z+1;
5 od

1 // mult : x, y -> z
2 z = 0;
3 do x :
4 do y :
5 z = z+1;
6 od
7 od

LOOP Predecessor 28

How about the predecessor function? In some frameworks this is the first
real challenge.

pred(x) = x •− 1 =
{

0 if x = 0,
x − 1 otherwise.

This requires a little trick, which is not totally obvious. We use an extra
variable that lags behind.

1 // pred : x -> z
2 z = 0;
3 v = 0;
4 do x :
5 z = v;
6 v = v+1;
7 od

LOOP Sign and Conditionals 29

The sign function sign(x) = min(x, 1) can also be implemented by
abusing the loop construct as a Boolean test.

1 // sign : x -> z
2 z = 0;
3 v = 0;
4 v = v+1;
5 do x :
6 z = v;
7 od

Now we can build conditionals. This is: if(x > 0) P;

1 z = sign(x); // sloppy but hey ...
2 do z :
3 P;
4 od

Semantics 30

More precisely, suppose a loop program P involves variables
x1, x2, . . . , xk. Given numerical values to all this variables, a single
execution of P will produce new values x′

1, x′
2, . . . , x′

k. Hence we can
associate a map

JP K : Nk → Nk

with P . The precise definition of JP K is by induction on the buildup of
P , see below.

To define the usual input/output behavior we compose JP K with
injections ι : Nn → Nk and projections π : Nk → N .

Application: Semantics of LOOP Programs 31

Here is a more detailed definition of the semantics of a LOOP program,
using iteration.
Define an environment to be a map that assigns a value to all variables.
Write E for all environments and P for all loop programs (including
variables).
Let E[t/x] be the environment that is the same as E except that the
value at x is t.

Definition 32

Definition
The semantics of LOOP programs is a function

∥.∥ : P → (E → E)

So ∥P∥ is a map from environments to environments that explains
precisely how execution of a program changes the contents of the
variables (think of them as registers in some machine executing P).

Semantics Defined 33

∥.∥ is defined be induction on the build-up of the program.

∥x = 0∥(E) = E[0/x]

∥x = y∥(E) = E[y/x]

∥x++∥(E) = E[E(x) + 1/x]

∥P ; Q∥(E) = ∥Q∥(∥P∥(E))

∥do x : P od∥(E) = ∥P∥E(x)(E)

Here E[v/x] means: keep environment E except that the new value of
variable x is not v.

So we only use one-point overwrites, composition and iteration; nothing
else is needed for LOOP programs.

Examples 34

Let P be the program

do x: x++ od

Then ∥P∥(a) = 2a.

How about the program Q given by
do x:

do x: x++ od
od

We can compute the semantics of Q using the previous example:

∥Q∥(a) = ∥P∥a(a) = a 2a

Exercises 35

Exercise
Determine the semantics of

u = 0; v = 0;
do x :

u++; t = u; u = v; v = t;
od

Loop Computability 36

Next we introduce the class of all functions computable by loop programs
(under some reasonable input/output convention).

Definition
A function f : Nn → N is loop-computable if there is a LOOP program
P , an injection ι and a projection π such that π ◦ JP K ◦ ι = f .
A relation A ⊆ Nn is loop-decidable if its characteristic function is
loop-computable.

Of course, the program P may have more than just n variables.

Note that unlike with rudimentary and elementary functions we have
started with a syntactic characterization, a class of expressions or
programs.
The question arises whether there is a way to describe the
loop-computable functions directly via basic functions and closure
operations. For example, it is clear that loop-computable function are
closed under composition.

Exercises 37

Exercise
Show how loop-computable functions are closed under definition by cases.

Exercise
Show that exponentiation 2x and super-exponentiation 2 ↑ x are
loop-computable.

Exercise
Show that the next-prime function n 7→ min

(
x > n | x prime

)
is

loop-computable.

LOOP is PR 38

Theorem
The loop-computable functions are precisely the primitive recursive
functions.

Proof.
The only difficult part in the argument is to show that

loop-computable functions are closed under primitive recursion, and
application of a loop operation preserves primitive recursiveness.

For simplicity assume that there is only one parameter y. Suppose
P : y → z and Q : x, u, y → z are two loop programs computing
g : N → N and h : N3 → N .
We show that f = Prec[g, h] : N2 → N is loop-computable by
constructing a loop program for f directly.

Proof, contd. 39

Here is a program Pf for f . Variable s is new.

1 // Pf: x, y --> z
2 s = x;
3 x = 0;
4 P; // y --> z
5 do s:
6 u = z;
7 Q; // x,u,y --> z
8 x = x+1;
9 od

It is a good exercise to determine the semantics JPfK in detail.

Proof, contd. 40

For the opposite direction consider a loop program P with variables
x1, x2, . . . , xk and semantics f = JP K : Nk → Nk .
We may assume by induction that f = (f1, . . . , fk) is primitive recursive
in the sense that each of the fi is so p.r. Now consider program Q:

do x: P od

For simplicity, assume x = x1. Define the vector valued function

F (0, x) = x

F (n + 1, x) = JP K(F (n, x))

Using sequence numbers we can show that all the component functions
of F are primitive recursive. But then JQK(x) = F (x1, x).

2

A Hierarchy 41

There is a natural way to distinguish between loop programs of different
complexity: we can count the nesting depth of the loops in the program.

Definition
Let Loop(k) be the class of loop programs that have nesting depth at
most k.

Level 0 is not very interesting: it is easy to see that any scalar function
that is Loop(0)-computable is of the form

f(x) = c · xi + d

where c and d are both constant, c ∈ {0, 1}.

Exercise
Give a detailed proof of the last claim.

Level 1 42

But Loop(1) turns out to be somewhat more complicated.

We have seen that addition and predecessor are Loop(1)-computable.
It is easy to modify the argument for conditionals above to show that
if-then applied to Loop(1)-computable functions produces another
Loop(1)-computable function.
Since Loop(1) is trivially closed under composition we are missing only
remainders and integer division with fixed modulus to show that all the
basic rudimentary functions are Loop(1)-computable.

Taking Mods 43

The following program computes the remainder for modulus 2.

1 // mod2 : x -> u
2 u = 0;
3 v = 1;
4 do x :
5 t = u; // swap u and v
6 u = v;
7 v = t;
8 od

Exercise
Show that x mod m is Loop(1)-computable for ever fixed modulus m.

Taking Divs 44

The following program computes the integer quotient x/2.

1 // div2 : x -> u
2 u = 0;
3 v = 0;
4 do x :
5 u++;
6 t = u; // swap u and v
7 u = v;
8 v = t;
9 od

Exercise
Show that x div m is Loop(1)-computable for ever fixed modulus m.

Rudimentary is Loop 1 45

Theorem
A function is Loop(1)-computable if, and only if, it is rudimentary.

Proof.
We have just verified that rudimentary programs are Loop(1)-computable.
The other direction is more difficult: every Loop(1) program is already
rudimentary. For the proof, consider a single loop Q:

do x: P od

Suppose the variables are x where x = x1, as before. The loop body P is
Loop(0), so the effect of executing it P is a linear function on each of the
variables:

x′
i = ci · xp(i) + di

where ci ∈ {0, 1} and di ≥ 0 constant.

Dependencies 46

Here p : [n] → [n] is an arbitrary dependency map that indicates how
values are passed from one variable to another in an assignment xi =
xj;

To deal with assignments of the form xi = 0; it is convenient to
introduce a phantom variable x0 whose value is fixed at 0. Then we can
rewrite the new values as

x′
i = xp(i) + di

Now consider the dependency graph G = ⟨V, E⟩ where

V = {x0, x1, . . . , xn}
E = { (xj , xi) | j = p(i) }

Thus, there is a path in G from xj to xi if the value of xj propagates to
xi, provided the loop is executed sufficiently often.

Example: Division by 2 47

Variables are {z, x, u, v, t} where z is clamped at 0.

1 u = z; v = z;
2 do x :
3 u = u + 1;
4 t = u; u = v; v = t;
5 od

The dependency graph looks like so (the edge labels indicate the
increment factor di).

z x t u v

1

1

Dependency is Unicyclic 48

Note that the indegree of every node in G is at most 1. Hence the
strongly connected components of G are just cycles, and all these
components are isolated from each other.
But then the values of the registers on a cycle at time t (after t
executions of the loop) are of the form

x =
{

a0 if t = 0,
a · (t div l) +

∑
i<t mod l ai otherwise.

where l is the length of the cycle, and the ai are the labels, a being the
sum of all these labels.
Hence the final value of a variable after execution of P is a rudimentary
function of the initial values. Since rudimentary functions are closed
under composition, the whole Loop(1) program can only compute a
rudimentary function.

2

1 Rudimentary and Elementary Functions

2 LOOP Programs

3 Program Equivalence

Equivalence of Programs 50

We define equivalence of programs in terms of the function computed by
the respective programs, a purely extensional characterization.

Definition
Two programs P and Q are equivalent if they compute the same function
Nn → N.

Note that this is a weaker notion than having the same semantics,
JP K = JQK. For example, there is no reason why equivalent programs
should use the same internal variables.
More importantly, the two programs can be based on two different ways
of computing the function in question. Clearly, this type of equivalence is
very hard to detect.

Entscheidungsproblem 51

For each class C of programs such as rudimentary, elementary, Loop(k),
primitive recursive we now have a decision problem:

Problem: Program Equivalence for C
Instance: Two programs P and Q in class C.
Question: Are P and Q equivalent?

This is the problem one would like to solve when one verifies the
correctness of program transformations: Q is obtained from P by
applying a transformation, and we want to make sure that the meaning
of P has not changed.

Inequivalence 52

Alas, for technical reasons it is often better to consider Inequivalence: Is
there some input on which the two programs yield different output?

One reason for this surprising twist is that Inequivalence of programs is
semi-decidable, even if we have no constraints on the class C (actually,
we have to insist on total functions rather than partial ones as in the case
of arbitrary computable functions): For Inequivalence one can conduct a
brute-force search over all possible inputs to find an x such that

P (x) ̸= Q(x).

This may appear rather non-sensical, but in lower complexity classes the
distinction between Equivalence and Inequivalence becomes quite
important. Of course, as far as decidability is concerned, there is no
difference between Equivalence and Inequivalence.

Loop 0 53

Proposition
Inequivalence for Loop(0) programs is decidable in polynomial time.

Proof.
Given the program P , we can easily compute an index i and constants
c ∈ {0, 1}, d ≥ 0 such that P computes

x 7→ c · xi + d

But then equivalence and hence inequivalence are trivial to check: index
and constants have to be the same for both programs.

2

Exercise
Devise a fast algorithm to test Equivalence of Loop(0) programs.

Loop 2 and Up 54

Lemma
Inequivalence for Loop(2) programs is undecidable.

Proof. Given a multivariate integer polynomial p(x) one can easily build
a program P that computes

signbar(p(x)) ∈ {0, 1}

P is naturally level 2 since all the arithmetic can be handled there.

Let Q be the trivial program that computes the constant 0 function.
Then Inequivalence for P and Q comes down solving a Diophantine
equation, which problem is undecidable by Matiyasevic’s theorem.

2

Loop 1 55

That leaves Inequivalence for level 1 open: can we check if two
rudimentary functions disagree on some input?

One might suspect that Inequivalence of rudimentary functions is indeed
decidable since these functions are in some sense periodic or piecewise
affine.

But the details bear some careful explanation: level 2 is not far away, and
there Inequivalence is already undecidable.

As it turns out, Inequivalence for Loop1 program is decidable, but is
already NP-hard, so there is likely no fast algorithm for checking
equivalence of such programs.

Partitioning the Domain 56

Definition
Define an equivalence relation ≡β,µ on Nn as follows: x and y are
equivalent if

xi < β ∨ yi < β implies xi = yi, and
xi ≥ β ∧ yi ≥ β implies xi = yi (mod µ).

Each equivalence class of ≡β,µ is either a singleton or infinite.
The number of equivalence classes is (β + µ)n: each component of the
vector is either completely fixed (if it is less than β) or fixed modulo µ.

A simple case arises when β = 0: then we are simply subdividing Nn into
hypercubes of size µn.

Example 57

Consider the function

f(x, y) = x + x mod 2 + y div 2 + 1.

For β = 0, µ = 2 we get the following classes:

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

Example, contd. 58

f(x, y) = x + x mod 2 + y div 2 + 1

The corresponding four component functions for the equivalence classes
are

x + 1
2 y + 1

2 x + 1
2 y + 3

2

x + 1
2 y + 1 x + 1

2 y + 2

In essence, the mod terms affect the additive constant and the div terms
produce the fractional coefficients.

Describing Rudimentary Functions 59

Theorem
For each rudimentary function f : Nn → N there are constants β and µ
such the restriction of f to the equivalence classes of ≡β,µ is an affine
function:

f(x) =
∑

i

ci · xi + c.

Proof.
Use induction on the buildup of f . Here are the important cases.

f1 + f2 β = max(β1, β2) µ = µ1µ2

f1
•− 1 β = β1 + µ1 µ = µ1

W (f1, f2) β = max(β1, β2) + µ2 µ = µ1µ2

f1 div c β = β1 µ = cµ1

f1 mod c β = β1 µ = cµ1

Simple Example 60

Suppose g(x) is affine on the classes of ≡0,µ.
So there is a family of µ many affine functions Gi such that

g(x) = Gx mod µ(x)

Set f(x) = g(x) mod c. Then

f(x) = Gx mod µ(x) mod c = Gx mod µ(x mod c) mod c

and we have to distinguish at most cµ classes for f .

A Basis Set 61

One can push things a bit further and show that if a rudimentary
function f is piecewise affine with respect to ≡β,µ then f is completely
determined by its values on the basis set

S = { x | xi ≤ β + 2µ }.

In other words, if g is another rudimentary function with parameters β
and µ and we have

∀ x ∈ S (f(x) = g(x))

then the two functions already agree everywhere.

Putting Things Together 62

Note that ≡β′,µ′ refines ≡β,µ whenever β′ ≥ β and µ′ = cµ.

Hence we can always choose the same parameters for any two functions.

Theorem
Let f1 and f2 be two rudimentary functions with parameters β1, µ1 and
β2, µ2, respectively. Then the two functions are equivalent if the agree on

{ x | xi ≤ max(β1, β2) + 2µ1µ2 }.

Inequivalence 63

So how hard is it to check Inequivalence for Loop(1)?

We can easily compute the parameters β and µ from the programs, and
as we have seen we may assume they are the same.

What is left is a simple search over the test set

S = { x | xi ≤ β + 2µ }.

There is a slight problem, though: there are exponentially many values to
check. So a deterministic algorithm would be exponential, but if we allow
nondeterminism we can get away with polynomial time: guess the
difference and verify it, all in polynomial time.

While Programs 64

Loop-computable is the same a primitive recursive. We know that in
order to move from p.r. to full computability it suffices to add
unbounded search.
What does one have to add to loop programs to obtain full
computability?
It turns out, we only need to replace the fixed-number-of-steps loop
construct by a while-loop that has no a priori bounds on the number of
executions.

while x: P;

The point is that program P may contain variable x and change its
value. The loop terminates if x attains values 0.

Theorem
While programs correspond exactly to general recursive functions.

Proofsketch 65

It is not hard to see that while-computable functions are all general
recursive.
Suppose we have a program with a single while-loop. All parts of the
program other than the actual while-loop are easily seen to be primitive
recursive.
The while-loop itself can be expressed by iterating the loop body until
the condition fails to hold. This corresponds to performing an unbounded
search.

With a little more effort we can also handle nested while-loops: one can
always get away with just a single while-loop.

Proof, contd. 66

It suffices to show (see Kleene’s Normal Form theorem) that unbounded
search applied to a primitive recursive predicate is while-computable.

We already know that all p.r. relations are loop-computable and hence
also while-computable. But search (say, for a root of f) is easy with a
while-loop:

r = 1;
s = 0;
while r:

r = f(s);
s = s + 1;

2

	Rudimentary and Elementary Functions
	LOOP Programs
	Program Equivalence

