
CDM
Register Machines

Klaus Sutner
Carnegie Mellon University
Fall 2024

Where Are We? 1

The examples from last lecture show that primitive recursive functions
are not enough to serve as a definition of computability—even though
they encompass a lot of functions that fail to be efficiently computable.

General Recursion Some intuitively computable functions, based on a
general type of recursion, fail to be primitive recursive.

Evaluation Computability forces functions to be partial in general, we
need to adjust our framework correspondingly.

Insane Growth Some computable total functions have stupendous growth
rates that are essentially incomprehensible.

1 Register Machines

2 Universality

A Different Model 3

What now? We will turn our problems into a solution: concoct a model
of computation that, by design, can handle Ackermann, Friedman’s α
(and other perverse examples of computable functions) and partial
evaluation.

We will do this by using a machine model, another critical method to
define computability and complexity classes. There are many plausible
approaches, we will use a model that is slightly reminiscent of assembly
language programming, only that our language is much, much simpler
than real assembly languages.

Functions computed by these machines will turn out to be partial in
general, so this might fix all our problems.

Legitimate Question: Why Not Turing Machines?

Turing Machines are Brilliant 4

Of all the standard models of computation, Turing machines are most
easily shown to capture precisely the intuitive notion of computability:
arguably they correspond to the abilities of a human computor.

TMs are fairly simple, certainly much more palatable then
Herbrand-Gödel equations or Church’s λ-calculus, but not as nice as
models that are closer to actual hardware such as register machines or
random access machines.

And they work extremely well in the context of complexity theory, unlike
some of the other models. Since we are interested in abstract
computability, this is not a central concern for us.

Wittgenstein 5

Turing’s “Machines.”
These machines are humans who calculate.

Turing Machines Suck 6

One substantial drawback of TMs is that it is hugely cumbersome to
actually construct interesting examples. Say, a TM that computes
multiplication of naturals given in binary. Or a universal machine that
can be run on nice examples. Or try to prove that a Turing machine, on
input n, can compute the nth prime.

Proofs in complexity theory using TMs are often incredibly tricky and use
very clever and intricate constructions. The justification is typically:
“clearly, one can construct a TM that does such-and-such . . . “ Looking
at these proofs, one often has the sense that the argument may well be
correct, but things feel a bit iffy.

Similarly, even tiny TMs with single-digit number of states are often just
about impossible to analyze (busy beaver problems).

Register Machine 7

Definition
A register machine (RM) consists of a finite number of registers and a
control unit.

We write R0, R1, . . . for the registers and [Ri] for the content of the ith
register: a single natural number.

Note: there is no bound on the size of the numbers stored in our
registers, any number of bits is fine. This is where we break physics.

The control unit is capable of executing certain instructions that
manipulate the register contents.

Instruction Set 8

Our instruction set is very, very primitive:

inc r k
increment register Rr, goto k.

dec r k l
if [Rr] > 0 decrement register Rr and goto k, otherwise goto l.

halt
well . . .

The gotos refer to line numbers in the program; note that there is no
indirect addressing. These machines are sometimes called counter
machines.

RM Programs 9

Definition
A register machine program (RMP) is a sequence of RM instructions
P = I0, I1, . . . , Iℓ−1.

For example, the following program performs addition:
// addition R0 R1 --> R2

0: dec 0 1 2
1: inc 2 0
2: dec 1 3 4
3: inc 2 2
4: halt

Hardware versus Software 10

Since we have no intentions of actually building a physical version of a
register machine, this distinction between register machines and register
machine programs is slightly silly.

Still, it’s good mental hygiene: we can conceptually separate the physical
hardware that supports some kind of computation from the programs
that are executed on this hardware. For real digital computers this makes
perfect sense. A similar problem arises in the distinction between the
syntax and semantics of a programming language.

And, it leads to the juicy question: what is the relationship between
physics and computation? We’ll have more to say about this in a while.

RM-Computability 11

Definition
A function is RM-computable if there is some RMP that implements the
function.

This is a bit wishy-washy: we really need to fix

a register machine program P ,
input registers I, and
an output register O.

Then (P, I, O) determines a partial function f : Nk ↛ N where k = |I|.

A Reasonable I/O Convention 12

Given input arguments a = (a1, . . . , ak) ∈ Nk, set the input regis-
ters: [Ri] = ai.

All other registers are initialized to 0.

Then run the program.

If it terminates, read off the value: f(a) = [R0].

If the program does not terminate, f(a) is undefined.

Run the Program? 13

To describe a computation of a RMP P we need to explain what a
snapshot of a computation is, and how get from one snapshot to the
next. Clearly, for RMPs we need two pieces of information:

the current instruction, and

the contents of all registers.

Definition
A configuration of P is a pair C = (p, x) ∈ N × Nn.

Steps in a Computation 14

Here is a very careful definition of what it means that a configuration
(p, x) evolves to the next configuration (q, y) in one step under P :

Ip = inc r k:
q = k and y = x[xr 7→ xr + 1]

Ip = dec r k l:
xr > 0, q = k and y = x[xr 7→ xr − 1] or
xr = 0, q = l and y = x

Notation: (p, x) P

1 (q, y).

Note that if (p, x) is halting (i.e. Ip = halt) there is no next
configuration. Ditto for p ≥ ℓ, the length of the program.

Whole Computation 15

Define

(p, x) P

0 (q, y) :⇔ (p, x) = (q, y)

(p, x) P

t (q, y) :⇔ ∃ q′, y′ (p, x) P

t−1 (q′, y′) P

1 (q, y)

(p, x) P (q, y) :⇔ ∃ t (p, x) P

t (q, y)

A computation (or a run) of P is a sequence of configurations C0, C1,
C2, . . . where Ci P

1
Ci+1. A computation may be finite or infinite.

Finite versus Infinite 16

Note that a computation may well be infinite: the program
0: inc 0 0

has no terminating computations at all. More generally, for some
particular input a computation on a machine may be finite, and infinite
for other inputs.

Also, computations may get stuck. The program
0: inc 0 1

cannot execute the first instruction since there is no goto label 1.

Cleaning Up 17

Note that we may safely assume that P = I0, I1, . . . , Iℓ−1 uses only
registers Ri, i < ℓ. Similarly, we may assume that all the goto targets k
lie in the range 0 ≤ k < ℓ. Hence all numbers in the instructions are
bounded by ℓ.

Wlog, Iℓ−1 is a halt instruction, and there are no others.

It follows that these clean RMs cannot get stuck, every computation
either ends in halting, or is infinite. From now on, we will always assume
that our programs are syntactically correct in this sense.

Exercise
Write a program transformer that converts an arbitrary RMP into an
“equivalent” one that has these extra properties.

Termination 18

Again, we have two kinds of computations: finite ones (that necessarily
end in a halt instruction), and infinite ones. We will write

(Ci)i<n and (Ci)i<ω

for finite versus infinite computations.

Here ω denotes the first infinite ordinal. If you don’t like ordinals, replace
ω by some meaningless but pretty symbol like ∞.

Computing a Function 19

Suppose P is an RMP of length ℓ where and Iℓ−1 = halt. The initial
configuration for input a ∈ Nk is Ea = (0, (0, a, 0)). So the input is in
registers R1, . . . , Rk, all others are zero; the initiall state is 0.

Definition
A RMP P computes the partial function f : Nk ↛ N if for all a ∈ Nk:

If a is in the support of f , then the computation of P on C0 = Ea

terminates in configuration Cn = (ℓ−1, (b, y)) where f(a) = b.

If a is not in the support of f , then the computation of P on Ea

fails to terminate.

Terminology 20

Since all the standard models of computation produce the same clone of
functions one simply speaks about computable functions (unless there is
a reason to point to some particular model).

Traditionally, computable functions are called

Recursive functions
computable functions that are total

Partial recursive functions
computable functions that may be partial

A Subtlety 21

Recall that according to our convention, it is not admissible that an RM
program could get stuck (because a goto uses a non-existing label).
What if we allowed arbitrary RM programs instead of only clean ones?

The clone would not change one bit, our definitions are quite robust
under (reasonable) modifications. This is a good sign, fragile definitions
are usually of little interest.

Exercise
Modify the definition so “getting stuck” is allowed and show that we
obtain exactly the same class of partial functions this way. Invent RMs
without a halt instruction.

It’s A Clone 22

Clearly we can generalize the notion of a clone from total functions to
partial ones.

Proposition
Register machines computable functions form a clone, containing the
clone of primitive recursive functions.

Exercise
Figure out the details.

Aside: Time Complexity 23

The number of steps in a finite computation provides a measure of
complexity, in this case time complexity.

Given a RM P and some input x let (Ci)i<N , where N ≤ ω, be the
computation of P on x.
We write the time complexity of P as

TP (x) =
{

N if N < ω,
ω otherwise.

If you are worried about ω just read it as ∞. Alternatively, we could use
N − 1 as our step-count.

This may sound trivial, but it’s one of the most important ideas in all of
computer science.

Named Registers 24

To make RMPs slightly easier to read we use names such as X, Y , Z
and so forth for the registers.

This is just a bit of syntactic sugar, if you like you can always replace X
by R0, Y by R1 and so forth (at least if you ignore our I/O conventions).

And we will be quite relaxed about distinguishing register X from its
content [X].

Digression: Notation 25

There is actually something very important going on here: we are trying
to produce notation that works well with the human cognitive system.

Humans are exceedingly bad at dealing with fully formalized systems; in
fact, we really cannot read formal mathematics except in the most trivial
(and useless) cases. Try reading Russell-Whitehead’s Principia
Mathematica or Frege’s Begriffsschrift if you don’t believe me.

The current notation system in mathematics evolved over centuries and
is very carefully fine-tuned to work for humans.

Computers need an entirely different presentation and it is very difficult
to move between the two worlds. This is the main reason why
mathematical knowledge management is quite hard.

Example: Multiplication 26

Here is a program that multiplies registers X and Y , and places the
product into Z. U is auxiliary.

// multiplication X Y --> Z
0: dec X 1 6
1: dec Y 2 4
2: inc Z 3
3: inc U 1
4: dec U 5 0
5: inc Y 4
6: halt

A Computation 27

0 (2, 2, 0, 0) 1 (0, 2, 2, 0)
1 (1, 2, 0, 0) 2 (0, 1, 2, 0)
2 (1, 1, 0, 0) 3 (0, 1, 3, 0)
3 (1, 1, 1, 0) 1 (0, 1, 3, 1)
1 (1, 1, 1, 1) 2 (0, 0, 3, 1)
2 (1, 0, 1, 1) 3 (0, 0, 4, 1)
3 (1, 0, 2, 1) 1 (0, 0, 4, 2)
1 (1, 0, 2, 2) 4 (0, 0, 4, 2)
4 (1, 0, 2, 2) 5 (0, 0, 4, 1)
5 (1, 0, 2, 1) 4 (0, 1, 4, 1)
4 (1, 1, 2, 1) 5 (0, 1, 4, 0)
5 (1, 1, 2, 0) 4 (0, 2, 4, 0)
4 (1, 2, 2, 0) 0 (0, 2, 4, 0)
0 (1, 2, 2, 0) 6 (0, 2, 4, 0)

// multiplication X Y --> Z
0: dec X 1 6
1: dec Y 2 4
2: inc Z 3
3: inc U 1
4: dec U 5 0
5: inc Y 4
6: halt

Time Complexity? 28

2 4 6 8 10

100

200

300

400

500

Exercise
Determine the time complexity of the multiplication RM.

Flowgraph for Multiplication 29

X- Y- Z+ U+

H U- Y+

0 00

Example: Binary Digit Sum 30

The following RMP computes the number of 1’s in the binary expansion
of X, the so-called binary digit sum of x.

// binary digitsum of X --> Z
0: dec X 1 4
1: dec X 2 3
2: inc Y 0
3: inc Z 4
4: dec Y 5 8
5: inc Y 6
6: dec Y 7 0
7: inc X 6
8: halt

Flowgraph for DigitSum 31

X-

X-

Y+

Y-

Z+

Y+ Y-

X+

H

0

0

0

0

Digit Sum 32

The (binary) digit sum is actually quite useful in some combinatorial
arguments.

100 200 300 400 500

2

4

6

8

Exercises 33

Exercise
Show that every primitive recursive function can be computed by a
register machine.

Exercise
Implement a p.r. to RM compiler. How hard would it be to optimize the
RM?

Exercise
Suppose some register machine M computes a total function f .
Why can we not conclude that f is primitive recursive?

Coding 34

To translate finite structures into (Gödel-) numbers, we need a coding
system, consisting of three functions (see Coding for details).

⟨. . .⟩ : N⋆ → N

dec : N × N → N

len : N → N

Here ⟨. . .⟩ is multiadic and thus cannot be primitive recursive, but dec
and len are typically primitive recursive (actually, even more basic than
that).

http://www.cs.cmu.edu/~cdm/pdf/02-coding.pdf

Even/Odd Coding 35

A very natural system can be built around the pairing function

π(x, y) = 2x(2y + 1)

For example

π(5, 27) = 32 · 55 = 1760 = 110111 000002

In general, the binary expansion of π(x, y) looks like so:

ykyk−1 . . . y0 1 00 . . . 0︸ ︷︷ ︸
x

where ykyk−1 . . . y0 is the standard binary expansion of y (yk is the most
significant digit).

Picture (log plot) 36

A Bijection 37

The range of π is N+, so we don’t have a bijection. As it turns out, we
can exploit this produce a rather elegant coding function:

⟨nil⟩ := 0

⟨a1, . . . , an⟩ := π(a1, ⟨a2, . . . , an⟩)

Informally, it is easy to see that this coding function is indeed a bijection
between N⋆ and N.

⟨2, 3, 5, 1⟩ = 20548
= 1 0︸︷︷︸

1

1 00000︸ ︷︷ ︸
5

1 000︸︷︷︸
3

1 00︸︷︷︸
2

This makes it relatively easy to compute the decoding function dec(x, i).

Flowgraph dec(x, i) 38

X-

X-

Y+

Z+

I-

Y-

Z-

H

X+
0

0

0

0

0

Prepend b to x 39

X-

Y+

Y+

Y-

X+

X+

Y+

B-

X-

Y+

H

Y-

X+

0 0 0

0

0

Ackermann A6 40

This computes super-super-super-exponentiation, essentially the same as
A6. Not so unspeakable after all.

Self-Reference 41

As Gödel has shown devastatingly in his incompleteness theorem,
self-reference is an amazingly powerful tool. On occasion, it wreaks
havoc: the incompleteness theorem takes a wrecking ball to Hilbert’s
beautiful program in its original form.

However, in the context of computation, self-reference turns into a
genuine resource. We can use our coding machinery to arithmetize
register machines, to represent them by numbers. But, once an RM is
translated into a number, another RM can compute with it.

This leads to the fundamental concept of universality.

Coding RMPs 42

A single instruction of an RMP can easily be coded as a sequence
number:

halt ⟨0⟩

inc r k ⟨r, k⟩

dec r k l ⟨r, k, l⟩

And a whole program can be coded as the sequence number of these
numbers.

Example: Addition 43

For example, the simplified addition program
// addition R0 + R1 --> R1

0: dec 0 1 2
1: inc 1 0
2: halt

has code number

⟨⟨0, 1, 2⟩, ⟨1, 0⟩, ⟨0⟩⟩ = 88098369175552.

Note that this code number does not include I/O conventions, but it is
not hard to tack these on if need be.

1 Register Machines

2 Universality

Turing and Universality 45

This special property of digital computers, that they can
mimic any discrete state machine, is described by saying
that they are universal machines. The existence of ma-
chines with this property has the important consequence
that, considerations of speed apart, it is unnecessary to de-
sign various machines to do various computing processes.
They can all be done with one digital computer, suitably
programmed for each case. It will be seen that as a conse-
quence of this all digital computers are in a sense equivalent.

Alan Turing (1950)

UTM 46

U
M̂

x

M(x)

Turing 1936 47

Computational universality was established by Turing in 1936 as a purely
theoretical concept.

Surprisingly, within just a few years, practical universal computers (at
least in principle) were actually built and used:

1941 Konrad Zuse, Z3

1943 Tommy Flowers, Colossus

1944 Howard Aiken, Mark I

1946 Prosper Eckert and John Mauchley, ENIAC

Falling off a Cliff 48

Let’s define the state complexity of a RMP to be its length, the number
of instructions used in the program.

An RMP of complexity 1 is pretty boring, 2 is slightly better, 3 better
yet; a dozen already produces some useful functions. With 1000 states
we can do even more, let alone with 1000000, and so on.

Except that the “so on” is plain wrong: there is some magic number N
such that every RMP can already by simulated by a RMP of state
complexity just N : we can hide the complexity of the computation in one
of the inputs. As far as state complexity is concerned, maximum power is
already reached at N .

This is counterintuitive, to say the least.

Simulating Random Access Memory 49

How does one construct a universal computer? According to the last
section, we can code a RMP P = I0, I1, . . . , Iℓ−1 as an integer e, usually
called an index for P in this context.

Moreover, we can access the instructions in the program by performing a
bit of arithmetic on the index. Note that we can do this non-destructively
by making copies of the original values.

So, if index e and some line number p (for program counter) are stored in
registers we can retrieve instruction Ip and place it into register I.

Simulating a RM 50

Suppose we are given a sequence number e that is an index for some
RMP P requiring one input x.

We claim that there is a universal register machine (URM) U that, on
input e and x, simulates program P on x.

Alas, writing out U as a pure RMP is too messy, we need to use a few
“macros” that shorten the program.

Of course, one has to check that all the macros can be removed and
replaced by corresponding RMPs, but that is not very hard.

Macros 51

copy r s k
Non-destructively copy the contents of Rr to Rs, goto k.

zero r k l
Test if the content of Rr is 0; if so, goto k, otherwise goto l.

pop r s k
Interpret Rr as a sequence number a = ⟨b, c⟩; place b into Rs and c
into Rr, goto k. If Rr = 0 both registers will be set to 0.

read r t s k
Interpret Rr as a sequence number and place the Rtth component
into Rs, goto k. Halt if Rt is out of bounds.

write r t s k
Interpret Rr as a sequence number and replace the Rtth component
by Rs, goto k. Halt if Rt is out of bounds.

The Pieces 52

Here are the registers used in U :

x input for the simulated program P

E code number of P

R register that simulates the registers of P

I register for instructions of P

p program counter

Hack: x is also used as an auxiliary variable to keep the whole program
small.

Universal RM 53

0: copy E R 1 // R = E
1: write R p x 2 // R[0] = x
2: read E p I 3 // I = E[p]
3: pop I r 4 // r = pop(I)
4: zero I 13 5 // if I was halt
5: pop I p 6 // p = pop(I)
6: read R r x 7 // x = R[r]
7: zero I 8 9 // check if I was inc/dec
8: inc x 12 // x++; goto 12
9: zero x 10 11 // if(x != 0) goto 11
10: pop I p 2 // p = pop(I)
11: dec x 12 12 // x--
12: write R r x 2 // R[r] = x; goto 2
13: halt

Size? 54

Of course, the 13 lines in this universal machine are a bit fraudulent, we
really should expand all the macros. Still, the resulting honest register
machine would not be terribly large.
And there are lots of ways to optimize.

Exercise
Give a reasonable bound for the size of the register machine obtained by
expanding all macros.

Exercise
Try to build a smaller universal register machine.

Halting 55

If we define computability in terms of RMs, it follows that the Halting
Problem for RMs is undecidable: there is no RM that takes an index e as
input and determines whether the corresponding RM Pe halts (on all-zero
registers).

Since RMs are perfectly general computational devices, this means that
there is no algorithm to determine whether RM Pe halts; the Halting
Problem is undecidable.

Small Machines can be Complicated 56

Define a (n, k)-Turing machine to be a TM that has n states and a tape
alphabet of size k.

Clearly, there is a Busy Beaver problem for (n, k) TMs, the standard
problem is just the special case (n + 1, 2). Very little is known about the
general case.

In a similar spirit, one can ask for small values of n and k if there is a
universal (n, k) machine. One would expect a trade-off between n and k.
Some values where universal machines are known to exist are

(24, 2), (10, 3), (7, 4), (5, 5), (4, 6), (3, 10), (2, 18), (2, 5)

A Universal Turing Machine 57

Exercise
Figure out what this picture means.

Exercise (Very Hard)
Prove that this is really a universal Turing machine.

No Coding 58

One very pleasant feature of register machines is that the do not require
any input/output coding for arithmetic functions.

In general this is emphatically not the case. In particular Turing machines
naturally operate on strings, so numbers have to be coded (say, using
binary notation).

Things get worse if on looks at more exotic models of computation such
as the λ-calculus or physics-like models such as cellular automata. The
latter in particular tend to produce minor headaches when it comes to
I/O conventions.

Who Cares? 59

By constructing more RMs, one can try to convince oneself that any
“intuitively computable” function is already RM-computable. So the
universal RM can compute all computable functions.

Or, if one prefers Turing machines, one can show that an arithmetic
function is RM-computable iff it is TM-computable. Or λ-computable, or
µ-computable, and so on and so forth.

For discrete computation, there is only one model (as opposed to
computation on the reals).

	Register Machines
	Universality

