
End-User Development: New Challenges
for Service Oriented Architectures

Christian Dörner
University of Siegen

Hölderlinstr. 3
57068 Siegen

+49 271 740 4070

christian.doerner@
uni-siegen.de

Volkmar Pipek
University of Siegen

Hölderlinstr. 3
57068 Siegen

+49 271 740 4068

volkmar.pipek@
uni-siegen.de

Moritz Weber
University of Siegen

Hölderlinstr. 3
57068 Siegen

+49 271 740 4070

moritz.weber@
uni-siegen.de

Volker Wulf
University of Siegen

Hölderlinstr. 3
57068 Siegen

+49 271 740 4036

volker.wulf@
uni-siegen.de

ABSTRACT
Service Oriented Architectures (SOA) evolved as an important
architectural concept in software engineering. Although the services
of an SOA are loosely coupled and reusable, there have been few
considerations of SOA in terms of End User Development (EUD).
In this paper we will analyze the potential of SOA for the
development of adaptable systems and propose challenges, which
have to be solved to reach this goal. Our analysis is based on
empirical studies and on requirements for EUD systems, taken from
earlier research. If SOAs are extended with structures for in-use-
modifications (even beyond software technologies), it will be
possible to design a new generation of user-adaptable systems.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures – Service
Oriented Architectures. D.2.1 [Software Engineering]:
Requirements/Specifications – Tools. H.5.2 [Information
Systems]: User Interfaces – User-centered design. H.1.2
[Information Systems]: User/Machine Systems – Human Factors.

General Terms
Design, Human Factors.

1. INTRODUCTION
Service Oriented Architectures (SOA) promise the development of a
new generation of adaptive and adaptable software applications. In
comparison to other software architectures, SOA’s key features are
loosely coupled ‘functions’, which have a standardized and open
interface on the basis of XML. Such service interfaces ease the
creation of distributed systems, especially across borders of different
software infrastructures (e.g. of different organisations). This
practical advantage from an enterprise point of view will probably
make SOA the architecture of choice in the near future.

SOAs are often used as a basis for the implementation of processes,
which are part of the applications running on it. This way of
thinking about software and its construction puts (business)
processes in the centre of the whole software development process.
This paradigm shift allows new kinds of end user participation in the
software development process, as many users from organisational
contexts are now able to think about information systems in a more
‘natural’ way, as they are usually familiar with (business) processes.
The direct implementation of processes on top of a SOA will
partially eliminate the need of transformation form users’
requirements to UML or other modelling languages. This moves the
development tasks closer to the context of users, making SOA an
interesting topic for end user development (EUD) research. Imagine
for example a scenario, where a procurement manager could
dynamically create special cases of the purchasing process in the
ERP system by himself, based on the web service of the company
and its contract partners, to buy goods from a new supplier.
In the past, many EUD researchers thought about ways to ease
software development for end users, even if it is considered to be a
‘wicked problem’, having a high inherent complexity [3]. The
research about tailorable systems was often based on component
architectures, as those architectures were state of the art in software
engineering during that time. Famous tailorable systems are
BUTTONS [14], OVAL [15], FREEVOLVE [22] or AGENTSHEETS [18]
and KIDSIM [21]. Besides those systems, researchers also created
end user appropriate programming languages and alternative
programming philosophies, like programming by
demonstration/example or natural programming approaches (e.g. [5,
10, 16]). Other researchers focused on debugging and testing
support for end users [4, 9] and the development of software
development models [8].
Many of the systems presented ‘holistic’ approaches that required
applications to be completely developed in the respective
programming framework. In our understanding, flexibilization
technologies like component-based systems or SOA, although
mainly developed to improve software reuse, also offer the potential
for in-use-development in existing software infrastructures. But
what are the framing conditions and architectural requirements for
end user developable/tailorable SOAs to support this idea? This
paper delivers first answers by identifying new challenges, which
EUD poses for SOA.

In the next section we present our research methodology.
Afterwards we will present a short introduction of SOA before we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WEUSE IV’08, May 12, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-034-0/08/05...$5.00.

analyse, on an empirical and theoretical basis, which aspects are
important for the development of EUD tools. In section six, we will
use the results of the analysis to formulate challenges SOA has to
deal with, if EUD should be made possible. Before we conclude the
paper, we sketch some possible solutions for the previously
identified challenges.

2. METHODOLOGY
To consider EUD and SOA at the same time, we decided to design a
methodology similar to the Domain Analysis approach, which is a
concept to “[…] manage the identification, capture, and evolution
of domain knowledge and make the information reusable when
creating new systems in the same application domain.” [11] This is
especially useful in our case, as challenges for EUD systems can be
acquired best in the field, where end users do their daily work with
the systems. Repenning used a similar approach to identify 13
design guidelines for End-User Development suggestions, by
analyzing the AGENTSHEETS system [19]. He stated: “These
guidelines have emerged from observing people using the
AgentSheets system.“
We base our research on two information sources: empirical studies
and existing surveys. Empirical studies provide valuable
information about users’ needs and skills for developable systems
(e.g. problem statements, adaptation tasks). By taking surveys into
account, we had a solid basis of findings/suggestions of how to
design EUD systems.

3. SOA IN BRIEF
Like component-based architectures, Service Oriented Architectures
are designed for reuse and provide the possibility of changing parts
of a system without (re-)implementation. Even if the basic ideas
underlying SOAs are not new [12, 23], they become more and more
important for the development of modern software systems. The
main reasons are the platform-, vendor- and language-independence
as well as the reuse of services. Other reasons are the improved
ability to react on changing system requirements and the automation
of (business) processes.
The most popular technology for the implementation of SOAs are
web services. A web service represents a function that can be called
remotely over a network, making them similar to remote procedure
calls [12]. Web services were developed to support the interaction of
machines over a network and are based on well-defined XML
standards [20] for a universal service description and
communication. Per definition they are self-contained, self-
describing, modular software artifacts that can be combined with
other services. Earlier concepts like DCOM (Distributed
Component Object Model) or Java RMI (Remote Method
Invocation) left designers struggling with platforms, languages and
encoding schemes, resulting in limited interoperability [1].
Because web services can be combined with other web services to a
process, an application based on such a composition is not
programmed, but ‘orchestrated’. The term orchestration describes
generally a business process that involves the invocation of several
services [17]. There are various possibilities for the creation of such
orchestrations, from which the most famous one is BPEL (Business
Process Engineering Language). As BPEL itself is ‘only’ a
language, graphical modeling tools usually use BPMN (Business
Process Modelling Notation) for the graphical representation of a
(business) process. BPEL was designed with automated processes in

mind, making it impossible to have user-interactions within a
process. This is often insufficient, because user-interactions already
played a major role in workflow management systems. Therefore,
the BPEL extension BPEL4People was defined, which allows the
integration of people as ‘service processors’ into a (business)
process.
The web service concept defines at least two actors: the service
provider and the service consumer. Furthermore it defines an
optional service broker, which can be questioned by the service
consumer to find services of the service provider(s). UDDI
(Universal Description, Discovery and Integration) is the most
common implementations of a service broker and can be compared
to a phone book [12].
The users’ familiarity with process thinking may also afford the
management of the underlying software configuration by ‘simply’
modelling (business) processes. Amongst existing modelling tools
we basically find two categories: professional tools and web-based
‘Web 2.0’ tools. IBM WEBSPHERE BUSINESS MODELLER, IDS
SCHEER ARIS, ORACLE BPEL PROCESS MANAGER, SAP
NETWEAVER COMPOSITION ENVIRONMENT and SERENA BUSINESS
MASHUPS are examples for well-known professional tools, which
have the capability of modeling complex (business) processes in an
organizational environment. Using those tools demands a certain
technical knowledge in process modeling. In the second category,
we find tools/web pages like YAHOO! PIPES and MS POPFLY or the
end user programming tool MARMITE [24]. Those tools allow end
users the creation of mash-ups, which are basically a combination
(organized as process) of existing (dynamic) web contents (e.g. data
from web sites, services).

4. EMPIRICAL STUDIES
Considering that the tools described above already reflect quite a
history of programming ergonomics, the question arises: What
makes the tools so hard to use for end users? In our analysis, we
make use of our own empirical work, done in an industrial setting as
well as of a study from the implementation process of a SOA in the
financial industry.

4.1 PROBLEMS OF END USERS
The results we present here are taken from one of our recent studies,
where we identified problems and problem solving strategies –
related to software – of employees of small and medium sized
enterprises (SME) [7]. There are two problem categories, which are
highly relevant in the context of this paper. The first one can be
called ‘functional problems’, as it denotes mainly data exchange
problems and missing functions of the software. The second
category is closely related to the first one and covers collaborative
aspects of problem solving, like delegation support issues.
Functional problems can be reduced to the (business) functionality
of the software. Many users of the study work with the companies’
SAP system and described problems with the analysis of data. For
example one user struggled to collect the necessary data to do his
credit limit checks: “There are often problems, when I want to
compare things. I sometimes have the problem that I have to access
four or five thing in order, to get the things I need […] for example
the annually credit limit check of our customers. Therefore I need
master data and data from the SD, some data from financial
accounting and I don’t get them by pressing a button.” To
overcome shortcomings like this one, users started to export the
relevant data to Microsoft Excel and created their reports within this

tool. Unfortunately, it is not possible in any case to do an automated
export from the SAP system to Excel. In this case users had to
collect their data within the SAP system manually and copy and
paste this data into their Excel sheet. One user described this issue
that way: “Statistics […] my colleague wanted to know, how much
overrun each employee of his department had daily, during the last
month […] now it would be wonderful, if we were able to transfer
this into an Excel file; no Mrs. X has to type each number herself.”
Another example for missing functionality was the problem of a
user with a system, called HWS, which is an optimized standard
software product for his particular industry. The program did not
offer him the needed flexibility to do his calculations for a particular
quote, because the program did not allow him to make “a verifiable
determination of the needed masses”. Therefore he used Excel to do
this task. His colleague used the HWS system to manage and print
quotes. The use of Excel for the calculation led to a new problem. It
was impossible to exchange data between the HWS system and
Excel. As a solution, the two colleagues used printouts to exchange
data between the HWS system and Excel. The user described the
whole process like this: “When I get the prices back, I open my
Excel template and start typing the whole text of the quote – if I
have enough time. […] the problem is that this text is not
automatically available in the HWS system. Therefore it has to be
typed again completely. […] We have to type it at least twice. It
would be nice, if we had some kind of program for the HWS system,
which is directly connected with my Excel template.”
Aside from this tendency to design small solutions with familiar
tools, the study revealed further detailed information about the
‘escalation patterns’ of users. It was interesting to see that many
different persons and responsibilities/expertises were involved,
some even outside the organization where the problem occurred. In
most cases, the users asked one or more persons for help. This
diversity in the structure of problem solving patterns is important for
system design, as the involvement of different persons affords the
delegation of tasks, which should be supported by the systems.

4.2 ORGANIZATIONAL PROBLEMS
The analysis of organizational problems of getting (business)
processes implemented in an SOA is based on an empirical study
that Brahe and Schmidt [2] conducted in the financial industry.
They name several problems, from which we present the most
relevant ones in the context of this paper. These problems
supplement the end users’ perspective, which we discussed in the
last section.
Missing information was the first issue that was identified. The
problem occurred during the implementation of the (business)
processes. The developer did not have enough detailed information
about the process. Therefore he had to talk to people who know the
business requirements and could answer his questions. The next
issue was to find appropriate services for the ‘implementation’ of
the process activities. Services have varying locations, because they
are provided by different systems. A central service library allowed
searching for services in a common place, but the service
documentation was rather poor. Consequently, the process
developer had to contact every service developer to find out about
the services’ functionality. If an appropriate service was finally
found, the granularity of the service was sometimes too general or
too specific. For example, some services needed data for their
invocation, which was not supplied by the process. As a

consequence, the service had to be re-implemented to be useful in
this context.
Besides these more general issues, the tools used were not
appropriate for all tasks, even if they were powerful ones like the
IBM WEBSPHERE BUSINESS MODELER. The most significant problem
was the transformation of the process or solution model into real
code. The authors name the missing extensibility of the tool as main
issue in this case.

5. SURVEYS
The first survey we analyzed is one of our previous works about
component-based tailorability [25]. Wulf et al. identified three
requirements to make systems tailorable. The first requirement is to
provide an architecture for re-designing software. The second
requirement is to provide end-user-oriented concepts and interfaces
and the third requirement is to provide a strong congruency between
architectural and interface concepts. Those requirements ensure
that users have at least some basic tailoring functions at hand.
The second survey by Repenning and Ioannidou extends those
requirements by two other important aspects [19]. The first aspect is
that end user development systems must carefully balance the
user’s skill and the challenges posed by a development process. The
second aspect demands that such systems should enable an end-user
developer to gradually acquire necessary skills for tackling
development challenges. Taking those requirements into account
lowers the entry-level for adaptations and eases the learning process
of users to acquire design skills over the time.
If we think about the development of software, we also have to
consider maintenance and reuse aspects, as software is usually used
over a long period of time. The third of survey by Dittrich et al. [6]
adds some important requirements, concerning such issues. They
demand that EUD systems should have a good balance between
traditional software (re-) development and maintenance on the one
hand and tailoring and use on the other. If systems provide such a
balance, it will be very hard to distinct between them, because
software maintenance and (re-) development will to a growing
extent be mixed and interlaced with tailoring. Putting end users in
the role of developers will furthermore create the need for giving
end users better tools for testing of tailoring constructs as well as
the necessary training to use them. In section 4.1 we claimed that
users have a demand of delegating tasks to others. This is especially
interesting, as the development or adaptation of software usually
happens collaboratively [13]. Dittrich et al. support this thesis by
their requirement of creating better tools for reuse/sharing of
tailoring constructs.

6. NEW CHALLENGES FOR SERVICE-
ORIENTED ARCHITECTURES
By combining the problems we sketched in the empirical section
and the requirements we described in the previous sections, we had
a solid basis of requirements, which we used to evaluate Service
Oriented Architectures. The result of the analysis is a number of
challenges that SOAs have to meet for an optimal support for EUD
applications and interfaces.
One of the most important aspects of a SOA is the possibility to
exchange services and change service orchestrations during the
runtime of the system. This enables in-use-redesign. End users are
able to ‘change’ a SOA in their personal work context during the
use-time of the system. This provides an infrastructure that allows

not only changes from a software engineering perspective, but also
from users’ work-domain perspective. The loose coupling of
services leads to another important aspect of SOA. Its concepts are
designed to support language-, platform-, and vendor-independent
system-to-system communication. But, as EUD requirements were
not considered during the design of those concepts, end users are not
able to use the interfaces of SOAs ‘directly’ or to do some
modifications of them. End users expect (domain specific) graphical
user interfaces as representations for applications and consequently
for services as well. Additionally, the service interface descriptions
are ‘only’ of technical nature and must therefore be enhanced by
understandable non-functional information and an end user oriented
documentation.
SOA modeling tools are designed to provide ‘programming in the
large’, which is similar to the idea of end user development, because
it abstracts form technical details and translates the modeling
process to the description of domain specific (business) processes.
This advantage is unfortunately limited, because the modeling tools
are designed for software architects, making them far too complex
for end users. Process modeling requires using appropriate services
for the processes’ tasks. The search mechanisms for such services
exclude end users, because service descriptions inside the
repositories predominantly use a technical (e.g. location URL,
service parameters) style. Some web sites, like
http://www.programmableweb.com/ demonstrate how suitable
services categorizations for end users may look like. Closely
connected to this issue is the question of service granularity. This is
important, as end users have a different understanding of functions
in comparison to programmers. A first step in this direction is the
definition of the so-called business service of SAP. Business
services represent business functions (e.g. get sales volume) instead
of technical functions (e.g. get value from table), making it easier
for end users to understand them.
End users are usually not familiar with technical aspects of SOAs
from the beginning on. The requirement of a strong concurrency
between a graphical user interface and the architecture concept or
application logic behind it is therefore hard to achieve. Furthermore
users should be able to learn more about architectural concepts of
SOAs over the time, making it even harder to bring the divergent
aspects together. If it comes to the modeling process of services in a
SOA, we have to deal with the requirement of balancing the skills of
end users and the modeling process. Furthermore end users should
be enabled to gradually acquire necessary skills for dealing with
development challenges. This requirement for a ‘gentle-slope’ of the
development process leads to the need of an incremental
development process. Such a development process eases not only
the work for professional developers, but also for end users.
Therefore end users must have mechanisms, which allow them to
reuse self-made adaptations and adaptations of other users, leading
to a balance of software maintenance and tailoring at the same time.
This is already basically supported by the process-oriented design of
SOA, as processes can be reused and stored in service repositories.
The last aspect that has to be considered, are testing and debugging
mechanisms. Debugging of processes, running on a SOA, is
currently problematic and time-consuming. Error messages are
often very long and unspecific, as many of the used protocols are
based on XML. Besides those technical errors, users also need also
need tools to test their processes in a separated environment with
real data, as business exceptions have to be handled as well.

7. POSSIBLE SOLUTIONS
In this section we like to present first thoughts for the solution of the
challenges we described. The current SOA-standards are
comparatively young, which poses problems and chances at the
same time. The chance is to enrich metadata and protocol standards
with EUD concepts, to ease the development of adaptable/tailorable
systems. The problems can be seen in the implementation of
applications, because young standards change often and subsequent
versions may be incompatible to previous versions. The following
ideas could help to make the vision of End User Development in
Service Oriented Architectures a bit more real.
An important precondition for successful end user developments is
the provisioning of a suitable development model. The model
should apply a visual model approach, as graphical models are
usually easier to understand for users. The inherent process model
of SOAs is a good basis for that. One of the biggest technical
challenges is to keep the process model and the implementation of
the process synchronized, even when end users return to the process
level at use time. Since the development phases of process design,
service orchestration and (to a certain extent) service
implementation may all be involved in an in-use tailoring activity,
the usual division into application logic and user interface level
becomes problematic. Therefore it may be helpful to integrate
interface descriptions into the metadata of a service.
If we look at the development process, we have to deal with the
previously mentioned problem of service search. The first problem
is the service interface, which contains ‘only’ technical information.
That information should be extended with non-technical information
that explains the service and its possible working contexts to end
users. Since problems in the context of the orchestration or use of a
service may relate to organizational aspects, it may be advisable to
allow the information to have different scopes and visibility. It
should be possible to annotate a service to ease the sharing of
orchestrations and document issues that arose during use. A user
should be able to ‘trace’ the service down in other orchestrations in
order to estimate its use potential from other examples. In general,
this calls for something like an ‘end user wiki’ for services. The
second problem is the granularity of a service. The granularity
should be aligned to business functions, rather than technical
considerations. This would also foster users’ understanding of
services, as business terms are more familiar to them. This may be
partially solved by using service wrapper concepts that specialize
services, but in general it may be advisable to build hierarchical
service structures, whose ‘leaf services’ have a very fine granularity,
in order to provide more flexible service representations at the
process level. The third problem sphere is finding an appropriate
service search algorithm. It should not only take the additional non-
technical information into account, but could also be intelligent in
the sense of allowing service recommendation. Recommendation
functions could take for example the user profile, the user’s
experience and the modeling context into account to advise for the
use of a specific service.
Aside from providing orchestration interfaces appropriate for end
users it is necessary to address the collaborative nature of EUD in
SOA. Supporting the delegation of tasks to other users (or
professional maintenance services) is necessary as well as providing
testing tools for assuring quality. Testing should go beyond formal
syntax checks and also include business semantics to reduce logical
errors in the process flow. Testing tools could also provide an

exploration environment, to enable users to explore their solution in
a simulated practical setting.

Besides the design time of the system,
we also have to consider its use-time.
One requirement demanded to provide
graphical user interfaces, which have a
strong congruency with the underlying
architecture. The figure on the left
depicts a possible solution to this
requirement. A special EUD layer could
extend a typical three-tier architecture of
an application (the logic layer could be a
SOA for example). This layer is

implemented as a kind of wrapper around the GUI layer and has a
connection to the logic layer. The implementation as a wrapper is an
advantage, because the classical three-tier architecture concept is
not affected by this kind of implementation.

8. CONCLUSIONS
Service Oriented Architectures have a huge potential for the
implementation of tailorable systems, because in addition to
flexibility and platform-independence, the formulation of software
in terms of services and processes is closer to business domains.
Using processes as a ‘modelling language’, leads to a unification of
system design and organizational change. In this paper we tried to
identify the most difficult passages on the way by describing the
challenges of SOA, which have to be solved in the future to make
them tailorable by end users.
Many of the ideas we described call for additional metadata of
service descriptions. Especially for a potentially fast growing
collection of use experiences with a service, the amount of data to
be handled raises questions with regard to storage locations and
synchronization issues of this information, and serious concerns
about service performance if this additional contextual information
defers the functional communication of a service. Therefore, the
requirements EUD brings to SOA may require extending protocol
and server structures of SOA standards.

9. ACKNOWLEDGMENTS
Research funded by the German Federal Ministry of Education and
Research (BMBF) [‘SE 2006’] and the German Research Society
(DFG) [SFB/FK 615 ‘Media Upheavals’].

10. REFERENCES
[1] Adamopoulos, D.X., Enhancing Web Services in the

Framework of Service-Oriented Architectures. in Proc.
PDCAT '06, (2006), IEEE Press, 260 - 265.

[2] Brahe, S., BPM on top of SOA: Experiences from the
Financial Industry. in Proc. BPM'07, 2007, LNCS, 96 - 111.

[3] Brooks, F.P.J. No silver bullet: essence and accidents of
software engineering, IEEE Press, 1987, 10-19.

[4] Burnett, M., Cook, C. and Rothermel, G. End-user software
engineering. Communications of the ACM, 47 (9). 53-58.

[5] Cypher, A. Watch What I Do: Programming by
Demonstration. MIT Press, 1993.

[6] Dittrich, Y., Lindeberg, O. and Lundberg, L. End-User
Development as Adaptive Maintenance. in End-User
Development, Springer, 2005, 308 - 326.

[7] Dörner, C., Heß, J. and Pipek, V. Improving Information
Systems by End User Development: A Case Study Proc.
ECIS2007, University St. Gallen, 2007, 783-794.

[8] Fischer, G., McCall, R., Ostwald, J., Reeves, B. and Shipman,
F., Seeding, evolutionary growth and reseeding: supporting the
incremental development of design environments. in Proc.
CHI '94, 1994, ACM, 292 - 298.

[9] Ko, A.J. and Myers, B.A., Designing the whyline: a debugging
interface for asking questions about program behavior. in Proc.
CHI '04, (2004), ACM Press, 151 - 158.

[10] Lieberman, H. Your Wish Is My Command: Programming by
Example. Morgan Kaufmann, 2001.

[11] Lung, C.-H. and Urban, J.E. An approach to the classification
of domain models in support of analogical reuse. SIGSOFT
Softw. Eng. Notes, 20 (SI). 169 - 178.

[12] Ma, K.J. Web Services: What's Real and What's Not? IT
Professional, 7 (2). 14 - 21.

[13] Mackay, W.E., Patterns of sharing customizable software. in
Proc. CSCW '90, (1990), ACM Press, 209 - 221.

[14] MacLean, A., Carter, K., Lövstrand, L. and Moran, T., User-
tailorable systems: pressing the issues with buttons. in
Proceedings of the CHI '90, (1990), ACM Press, 175 - 182.

[15] Malone, T.W., Lai, K.-Y. and Fry, C. Experiments with Oval:
a radically tailorable tool for cooperative work. ACM Trans.
Inf. Syst., 13 (2). 177 - 205.

[16] Myers, B.A., Pane, J.F. and Ko, A. Natural programming
languages and environments. Commun. ACM, 47 (9). 47 - 52.

[17] Reichert, M., Stoll, D.: Komposition, Choreographie, Or-
chestrierung von Web Services in: EMISA Forum 2004, 21-32.

[18] Repenning, A. Agentsheets: A Tool for Building Domain-
Oriented Dynamic, Visual Environments Department of
Computer Science, University of Colorado, Boulder, 1993.

[19] Repenning, A. and Ioannidou, A. What makes End-User
development Tick? 13 Design Guidelines. in End User
Development, Springer, 2005.

[20] Shi, X. Sharing service semantics using SOAP-based and
REST Web services. IT Professional, 8 (2). 18 - 24.

[21] Smith, D.C., Cypher, A. and Spohrer, J. KidSim: programming
agents without a programming language Commun. ACM 37
(7). 54-67.

[22] Stiemerling, O. Component-Based Tailorability PhD Thesis,
Universität Bonn, Bonn, Germany, 2000.

[23] Vinoski, S. Old measures for new services. IEEE Internet
Computing, 9 (6). 72 - 74.

[24] Wong, J. and Hong, J.I., Making mashups with marmite:
towards end-user programming for the web. in Proceedings of
the CHI '07, (2007), ACM Press, 1435 - 1444.

[25] Wulf, V., Pipek, V. and Won, M. Component-based
tailorability: Enabling highly flexible software applications.
Journal of Human-Computer Studies, 66 (1). 1 - 22.

