
15-214 Recitation 1

Introduction to Course Infrastructure & Java

In this recitation you will make sure your development environment (Java, Eclipse, and
Git) is set up correctly as well as do a short introduction to Java.

Git and GitHub

Git is a distributed version control system commonly used for large software projects, and
GitHub is a hosting service for Git repositories. We will be using GitHub and Git to
distribute homework assignments, for you to turn in your homework, and for us to give
you grades and other feedback on your work. The basic idea is that you will clone – or make
a copy of – your GitHub repository on your local computer. You can then pull changes
from GitHub to receive our feedback and any new homework assignments, work locally on
your own computer to complete your homework, and commit and push your completed
homework back to GitHub so we can grade it.

Setting up your repository

To set up your repository, sign up for a GitHub account; you may use your existing GitHub
account if you have one. Then fill out the web form here:

http://garrod.isri.cmu.edu/214/registration

After filling out that form, confirm your email. Upon confirmation, a GitHub repository
will be set up for you.

You can make an initial clone of your Git repository with:

$ git clone https://github.com/CMU-15-214/your-andrew-id.git

where your-andrew-id is your Andrew ID. This will create a directory on your local com-
puter, with your Andrew ID as the name. This directory is the copy of your Git repository
in which you will work.

Retrieving assignments and grades

If you have already cloned your Git repository to your local computer, you can pull changes
from GitHub (to receive new assignments or grades, or work you’ve committed from another
clone of your repository) with:

$ git pull

1

http://git-scm.com/
https://www.github.com/
http://garrod.isri.cmu.edu/214/registration


15-214 Recitation 1

Importing an Eclipse project

This section describes how to import a project into Eclipse. We will frequently distribute
course materials as an Eclipse project.

First, if you don’t already have Eclipse installed you should download and install it from
this link:

https://eclipse.org/downloads/packages/eclipse-standard-44/lunar

Once Eclipse is installed, follow these steps to import the project:

1. File → Import

2. For the input source: General → Existing Projects into Workspace

3. In “Select root directory,” browse to [YOUR REPO]/recitation/01 (make sure “Copy
projects into workspace” is not checked).

4. Finish.

Exercise: Java Practice

After you have imported the “rec01” project, examine the Main, Person, and Animal

classes. Complete the addPet method for Person.

Turning in your work

After you are done working within a clone of your repository, you can turn in your work
with

$ git add file1 file2 ...

$ git commit -m "Completed addPet method for Person."

$ git push

where file1, file2 and so on are the names of files you have added or changed and the commit
message (after the -m) is an arbitrary message to describe your work.

1. The first command (git add) instructs git to track changes to a set of files in your
clone; this is called adding the files to your staging area. You can check what files
are in your staging area with the git status command.

2

https://eclipse.org/downloads/packages/eclipse-standard-44/lunar


15-214 Recitation 1

2. The second command (git commit) records all the locally-tracked changes as a new
version of the repository, along with a message that describes the new version. You
can check all of the recent commits on your machine with the git log command.

3. The third command (git push) records the most-recent committed version to the
remote server, your repository on GitHub.

Your homework is not turned in unless you have completed all three steps. Each
new version is essentially a local checkpoint of your work, which you can turn in when you
next push your repository to GitHub. If you push your repository to GitHub but have not
staged and committed your changes, those changes will not be pushed to GitHub.

Whenever you have finished a feature of your homework, though, it is a good practice to
commit it to your repository by adding them to your staging area and then committing
the changes. You should commit often and use helpful commit messages. It is common to
commit multiple versions locally before pushing your work to the remote server, although
you might want to periodically push your work to GitHub even if your homework is not
complete because this essentially makes a backup copy of your work.

Also, if you attempt to push your repository to GitHub but the GitHub repository has
changed since you last ran git pull, your push will fail. To fix this you just need to pull
the other changes from GitHub (using git pull) and attempt your push again.

When you are done pushing your work to GitHub, you should always check GitHub to
confirm your expected files are there. Alternatively, you can create a new clone of your
repository (using git clone) in a new location on your computer, and test your solution
in that new location. This method allows you to test exactly what the TAs will test when
they clone your repository from GitHub.

3

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

