

toad

© 2012-14 C Kästner, C Garrod, J Aldrich, and W Scherlis

School of
Computer Science

Principles of Software Construction:

Objects, Design and Concurrency

Design Goals

Christian Kästner Charlie Garrod

15-214

with slides from Klaus Ostermann

toad 2 15-214 Kästner

Learning Goals

• Discuss alternative designs in terms of design goals
 Design for division of labor
 Design for understandability and maintenance
 Design for change
 Design for reuse
 Design for robustness

• Characterize modularity and its benefits

• Apply design strategies to achieve design goals
 Explicit interfaces (clear boundaries)
 Information hiding (hide likely changes)
 Low coupling (reduce dependencies)
 High cohesion (one purpose per class)
 Low repr. gap (align requirements and impl.)

• Understand how strategies support goals

• Explain tradeoffs in designs with design goals and strategies

toad 3 15-214 Kästner

Goal of Software Design

• For each desired program behavior there are
infinitely many programs that have this behavior
 What are the differences between the variants?
 Which variant should we choose?

• Since we usually have to synthesize rather than
choose the solution…
 How can we design a variant that has the desired
properties?

toad 4 15-214 Kästner

Tradeoffs

void sort(int[] list, String order) {

 …

 boolean mustswap;

 if (order.equals("up")) {

 mustswap = list[i] < list[j];

 } else if (order.equals("down")) {

 mustswap = list[i] > list[j];

 }

 …

}

void sort(int[] list, Comparator cmp) {

 …

 boolean mustswap;

 mustswap = cmp.compare(list[i], list[j]);

 …

}

interface Comparator {

 boolean compare(int i, int j);

}

class UpComparator implements Comparator {

 boolean compare(int I, int j) { return i<j; }}

class DownComparator implements Comparator {

 boolean compare(int I, int j) { return i>j; }}

toad 5 15-214 Kästner

it depends
(see context)

depends on what?
what are scenarios?
what are tradeoffs?

toad 6 15-214 Kästner

The design process

1. Object-Oriented Analysis
 Understand the problem
 Identify the key concepts and their relationships
 Build a (visual) vocabulary
 Create a domain model (aka conceptual model)

2. Object-Oriented Design
 Identify software classes and their relationships with

class diagrams
 Assign responsibilities (attributes, methods)
 Explore behavior with interaction diagrams
 Explore design alternatives
 Create an object model (aka design model and design

class diagram) and interaction models

3. Implementation
 Map designs to code, implementing classes and

methods

toad 7 15-214 Kästner

Object-Oriented Design

• ―After identifying your requirements and creating
a domain model, then add methods to the
software classes, and define the messaging
between the objects to fulfill the requirements.‖

• But how?
 How should concepts be implemented by classes?
 What method belongs where?
 How should the objects interact?
 This is a critical, important, and non-trivial task

toad 8 15-214 Kästner

Software Quality

 Sufficiency / Functional Correctness
 Fails to implement the specifications … Satisfies all of the specifications

 Robustness
 Will crash on any anomalous even … Recovers from all anomalous events

 Flexibility
 Will have to be replaced entirely if specification changes … Easily adaptable to

reasonable changes

 Reusability
 Cannot be used in another application … Usable in all reasonably related

applications without modification

 Efficiency
 Fails to satisfy speed or data storage requirement … satisfies speed or data storage

requirement with reasonable margin

 Scalability
 Cannot be used as the basis of a larger version … is an outstanding basis…

 Security
 Security not accounted for at all … No manner of breaching security is known

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

O
b
je

c
t-D

e
s
ig

n

C
h
a
lle

n
g
e
s

toad 9 15-214 Kästner

Design for Change

toad 10 15-214 Kästner

Software Change

•…accept the fact of change as a way of life,
rather than an untoward and annoying
exception.
—Brooks, 1974

•Software that does not change becomes
useless over time.
—Belady and Lehman

•For successful software projects, most of the
cost is spent evolving the system, not in initial
development
 Therefore, reducing the cost of change is one of the
most important principles of software design

toad 11 15-214 Kästner

Design for
 Division of Labor

toad 12 15-214 Kästner

Building Complex Systems

● Division of Labor

● Division of Knowledge and Design Effort

● Reuse of Existing Implementations

simple complex

Comprehensible by
a Single Person

Buildable by
a Single Person

toad 13 15-214 Kästner

Design for Change
Design for Division of Labor
Design for Understandability
Design for Reuse
Design for Robustness
Design for Enabling Innovation
Design for Security
…

toad 14 15-214 Kästner

Modularity

toad 15 15-214 Kästner

A History of Modularity

(cc 2.0) Dave Ross I
B

M
 S

y
s
te

m
/

3
6

0

a
n
n
o
u
n
c
e
d
 1

9
6
4

toad 16 15-214 Kästner

Before System/360

• 7070
 7074

• 7090

• 1401
 1410

• 1620

• 7080

• 7030

• 8 different processors

• 6 different data formats
and instruction sets

• each designed from scratch

• each with their own
hardware connections
 memory
 I/O
 disks

toad 17 15-214 Kästner

Modular System/360

• Family of similar processors

• Standardized communication with I/O devices
(except for data rate)

• A single memory-CPU coupling

• A single I/O control system

• Compatible binary representations
 compiled on one machine, executed on another

• => Interchangeable hardware

• => Separate design of hardware

toad 18 15-214 Kästner

System/360 in 1970

[Baldwin&
Clark 2000]

toad 19 15-214 Kästner

[Baldwin&Clark 2000]

Design Structure Matrix

toad 20 15-214 Kästner [Baldwin&Clark 2000]

toad 21 15-214 Kästner [Baldwin&Clark 2000]

toad 23 15-214 Kästner

Modularity

● Interdependence within and
independence across modules

● “A module is a unit whose structural
elements are powerfully connected
among themselves and relatively weakly
connected to elements in other units.
Clearly there are degrees of connection,
thus there are gradations of modularity.”

toad 24 15-214 Kästner

Modularity

● Abstraction, Information Hiding, and Interface

● “A complex system can be managed by dividing
it up into smaller pieces and looking at each
one separately. When the complexity of one of
the elements crosses a certain threshold, that
complexity can be isolated by defining a
separate abstraction that has a simple
interface. The abstraction hides the complexity
of the element; the interface indicates how the
element interacts with the larger system.”

toad 25 15-214 Kästner

toad 26 15-214 Kästner

toad 27 15-214 Kästner

Interface (or Design Rule)

● Establishing a stable contract/interface

● Benefit:

– Efficiency; independent decisions

● Costs:

– Eliminates a choice

– Interface may not change (evolution)

– Interface may prevent superior design
(opportunity costs)

toad 28 15-214 Kästner

toad 29 15-214 Kästner

Understanding the Domain (OO Analysis + Design)

● Poorly Understood

– Unforeseen Interdependencies

– High Risk; Integration and Testing Problems

– High Opportunity Costs

● Well Understood

– Clear Design Rules

– Standards

– Testing and Integration can be done by Users

toad 30 15-214 Kästner

Consequences

● Modularity increases the range of
“manageable” complexity

● Modularity allows concurrent (design) work

● Modularity accommodates uncertainty

– Isolate risks

– Isolate parts that will likely change

● Modularity allows decentralized improvements

● Modularity as an investment (~stock option)

toad 31 15-214 Kästner

Design Goals
and

Design Strategies

toad 32 15-214 Kästner

Overview

•5 design goals
Design for division of labor
Design for understandability
Design for change
Design for reuse
Design for robustness

•5 design strategies (for now)
Explicit interfaces (clear boundaries)
 Information hiding(hide likely changes)
 Low coupling (reduce dependencies)
High cohesion (one purpose per class)
 Low repr. gap (align requirements and impl.)

toad 33 15-214 Kästner

Design for Division of Labor

• Modular Decomposition
 decomposing both design and implementation!

• Limit interactions in design process

+getImage()
+getName()

«interface»
Item

«interface»
World

+draw()

GUI1*

1 1

«interface»
Item

«interface»
World

+draw()

GUI1*

1 1

draw:
 if (item instanceof Rabbit)
 img = rabbitImg
 if (item instanceof Fox)
 img = foxImg
 ...

toad 34 15-214 Kästner

Discussion Virtual World

• In the first design GUI and Item are independent
 New items can be added without changing the GUI
 A different GUI can be implemented without changing
items

• Items have an interface describing how they can
be drawn
 Only this data available to GUI

• In the second design the GUI needs to know the
possible items
 GUI designer and Item designer need to communicate

toad 35 15-214 Kästner

Design Strategy: Explicit Interfaces

• Whenever two modules communicate, it should
be obvious from their interfaces

• Make interfaces between modules explicit
 Public methods
 Documentation, contracts
 Import of classes and libraries

• Avoid global state (e.g., static fields)

• Avoid hidden interactions through side channels
(data, files, network, …)

• Keep interfaces small and exchange as little
information as possible

toad 36 15-214 Kästner

Design for Reuse

• Modular Composability, compose modules from
different sources

• Good modules contain well-defined tasks reusable
in many contexts
 (Module may be a class, a package, a subsystem, …)
 Explicit interfaces how others can use a module
 Limited dependencies on other modules (low coupling)
 Useful cohesive functionality that’s worth reusing

• Examples
 GUI reuses Swing GUI elements
 World reuses collection libraries
 JUnit reusable in many projects
 Rabbits potentially reusable in different virtual world
 GUI reusable for arbitrary other simulations with items
 HW 1 reuses stack implementation from HW 0

toad 37 15-214 Kästner

Design Strategies: Coupling and Cohesion

Coupling

• Modules should depend on as few other modules
as possible
 Easier to understand (little context to understand)
 Independent modules easier to modify without rippling
effects (Design for Change)

 Easier to reuse in different context

Cohesion

• All responsibilities of a module should be related
and well defined – one purpose per class
 A module with lots of unrelated functionality is unlikely to
be reusable as it (or unnecessarily large)

 A cohesive module is easier to understand

Chose design alternatives with lower coupling and
higher cohesion

K
e
y
 p

r
in

c
ip

le
s
 to

 e
v
a
lu

a
te

 d
e
s
ig

n
s

toad 38 15-214 Kästner

Coupling and Cohesion

Coupling

• Modules should depend on as few other modules
as possible
 Easier to understand (little context to understand)
 Independent modules easier to modify without rippling
effects (Design for Change)

 Easier to reuse in different context

Cohesion

• All responsibilities of a module should be related
and well defined – one purpose per class
 A module with lots of unrelated functionality is unlikely to
be reusable as it (or unnecessarily large)

 A cohesive module is easier to understand

Chose design alternatives with lower coupling and
higher cohesion

K
e
y
 p

r
in

c
ip

le
s
 to

 e
v
a
lu

a
te

 d
e
s
ig

n
s

toad 39 15-214 Kästner

Example

• Create a Payment and associate it with the Sale.

Register Sale Payment

toad 40 15-214 Kästner

Example

: R e g is te r p : P a y m e n t

:S a le

m a k e P a y m e n t () 1 : c r e a te ()

2 : a d d P a y m e n t (p)

toad 41 15-214 Kästner

Example

: R e g is te r p : P a y m e n t

:S a le

m a k e P a y m e n t () 1 : c r e a te ()

2 : a d d P a y m e n t (p)

: R e g is te r :S a le

:P a y m e n t

m a k e P a y m e n t () 1 : m a k e P a y m e n t ()

1 .1 . c r e a te ()

toad 42 15-214 Kästner

Coupling

: R e g is te r p : P a y m e n t

:S a le

m a k e P a y m e n t () 1 : c r e a te ()

2 : a d d P a y m e n t (p)

: R e g is te r :S a le

:P a y m e n t

m a k e P a y m e n t () 1 : m a k e P a y m e n t ()

1 .1 . c r e a te ()

Second solution has less coupling
Register does not know about Payment class

toad 43 15-214 Kästner

Topologies with different coupling

toad 44 15-214 Kästner

Why High Coupling is undesirable

•Element with low coupling depends on only
few other elements (classes, subsystems,
…)
 ―few" is context-dependent

•A class with high coupling relies on many
other classes
Changes in related classes force local changes;
changes in local class forces changes in related
classes (brittle, rippling effects)
Harder to understand in isolation.
Harder to reuse because requires additional
presence of other dependent classes
Difficult to extend – changes in many places

toad 45 15-214 Kästner

Common Forms of Coupling in OO Languages

• TypeX has an attribute (data member or instance
variable) that refers to a TypeY instance, or
TypeY itself.

• TypeX has a method which references an instance
of TypeY, or TypeY itself, by any means.
 Typically include a parameter or local variable of type
TypeY, or the object returned from a message being an
instance of TypeY.

• TypeX is a direct or indirect subclass of TypeY.

• TypeY is an interface, and TypeX implements that
interface.

toad 46 15-214 Kästner

Low Coupling: Discussion

• Low Coupling is a principle to keep in mind during
all design decisions

• It is an underlying goal to continually consider.

• It is an evaluative principle that a designer
applies while evaluating all design decisions.

• Low Coupling supports design of more
independent classes; reduces the impact of
change.

• Context-dependent; should be considered
together with cohesion and other principles and
patterns

• Prefer coupling to interfaces over coupling to
implementations

toad 47 15-214 Kästner

Low Coupling: Discussion

• Subclassing produces a particularly problematic
form of high coupling
 Dependence on implementation details of superclass
 -> Prefer composition over inheritance

• Extremely low coupling may lead to a poor design
 Few incohesive, bloated classes do all the work; all other
classes are just data containers

• High coupling to very stable elements is usually
not problematic

toad 48 15-214 Kästner

Coupling to “non-standards”

• Libraries or platforms may include non-standard
features or extensions

• Example: JavaScript support across Browsers

<div id=―e1‖>old content</div>

In JavaScript…

MSIE: e1.innerText = ―new content‖

Firefox: e1.textContent = ―new content‖

W3C-
compliant DOM

standard

toad 49 15-214 Kästner

Coupling and Cohesion

Coupling

• Modules should depend on as few other modules
as possible
 Easier to understand (little context to understand)
 Independent modules easier to modify without rippling
effects (Design for Change)

 Easier to reuse in different context

Cohesion

• All responsibilities of a module should be related
and well defined – one purpose per class
 A module with lots of unrelated functionality is unlikely to
be reusable as it (or unnecessarily large)

 A cohesive module is easier to understand

Chose design alternatives with lower coupling and
higher cohesion

K
e
y
 p

r
in

c
ip

le
s
 to

 e
v
a
lu

a
te

 d
e
s
ig

n
s

toad 50 15-214 Kästner

High cohesion

• Classes are easier to maintain

• Easier to understand

• Often support low coupling

• Supports reuse because of fine grained
responsibility

toad 51 15-214 Kästner

Example

: R e g is te r p : P a y m e n t

:S a le

m a k e P a y m e n t () 1 : c r e a te ()

2 : a d d P a y m e n t (p)

(except for coupling), looks OK if makePayement
considered in isolation, but adding more system
operations, Register would take on more and more
responsibilities and become less cohesive.

toad 52 15-214 Kästner

Example

: R e g is te r p : P a y m e n t

:S a le

m a k e P a y m e n t () 1 : c r e a te ()

2 : a d d P a y m e n t (p)

: R e g is te r :S a le

:P a y m e n t

m a k e P a y m e n t () 1 : m a k e P a y m e n t ()

1 .1 . c r e a te ()

toad 53 15-214 Kästner

Cohesion in Graph Implementations

class Graph {
 Node[] nodes;
 boolean[] isVisited;
}
class Algorithm {
 int shortestPath(Graph g, Node n, Node m) {
 for (int i; …)
 if (!g.isVisited[i]) {
 …
 g.isVisited[i] = true;
 }
 }
 return v;
 }
}

toad 54 15-214 Kästner

Cohesion: Discussion

• Very Low Cohesion: A Class is solely responsible for many
things in very different functional areas

• Low Cohesion: A class has sole responsibility for a complex
task in one functional area

• High Cohesion: A class has moderate responsibilities in one
functional area and collaborates with classes to fulfil tasks

• Advantages of high cohesion
 Classes are easier to maintain
 Easier to understand
 Often support low coupling
 Supports reuse because of fine grained responsibility

• Rule of thumb: a class with high cohesion has relatively few
methods of highly related functionality; does not do too
much work

toad 55 15-214 Kästner

Monopoly Example

class Player {
 Board board;
 Square getSquare(String name) {
 for (Square s: board.getSquares())
 if (s.getName().equals(name))
 return s;
 return null;
}}

class Player {
 Board board;
 Square getSquare(String n) { board.getSquare(n); }
}
class Board{
 List<Square> squares;
 Square getSquare(String name) {
 for (Square s: squares)
 if (s.getName().equals(name))
 return s;
 return null;
}}

toad 56 15-214 Kästner

Aside: Law of Demeter (LoD)

• LoD (or Principle of Least Knowledge): Each
module should have only limited knowledge about
other units: only units "closely" related to the
current unit

• In particular: Don’t talk to strangers!

• For instance, no a.getB().getC().foo()

toad 57 15-214 Kästner

Design for Understandability

• Understand (maintain, debug, test) modules
locally, ideally in isolation

• Good modules are self-contained and
understandable with little context
 Explicit interfaces, well-defined and well-documented
 Low coupling, high cohesion
 Self-documenting implementations

• Examples:
 GUI can be understood without knowing how Rabbits load
their icons

 Graphs can be understood without knowing how they are
used; graph algorithms can be understood without
knowing how graphs are implemented

toad 58 15-214 Kästner

Design for Change

• Anticipate change where possible
 Identify risks
 Identify instable requirements
 Identify opportunities for future innovation
 Identify stable parts
 Anticipate future trends, customers, …

• Design modules such that:
 Interfaces correspond to stable parts
 Internal implementations hide unstable parts
 Allows changing module implementation locally without
affecting remaining system

• Example:
 Initialization of virtual world encapsulated in single class
 Common behavior of rabbits, foxes codified in interfaces,
AI implementation hidden for change

toad 59 15-214 Kästner

Design for Change: Continuity

• Continuity: Small changes in the requirements
should require only small changes in the
implementation

• Design for change
 Low coupling and high cohesion prevent ripple effects
 Anticipate likely changes, extensions, and risk; hide
behind an interface (information hiding, polymorphism)

• Heuristic Low Representational Gap: Align
object model with domain model

• Examples:
 New language editor in Eclipse should not require
modification of Eclipse’s platform

 Changing what Travis CI executes: change travis.yml file
 Separate GUI from core implementation
 Avoid replicating code (one change instead of many)

toad 60 15-214 Kästner

Continuity (details)

• Poor continuity
 Major requirements change = minor change
 Minor requirements change = months of work

• Good continuity
 Major requirements change = major overhaul
 Minor requirements change = change a config file

• Some crosscutting usually not avoidable

• Client is less likely to change purpose of the
application
 …but more likely to change how a dialog appears

• Design with an expectation of change
 …but make it less costly to make changes

• Clients will pay for what they see
 …but no one will pay $1000 to make text bold

toad 61 15-214 Kästner

OO Design Strategy: Low Representational Gap

• Align object model with domain model
 Map problem-space abstractions to solution-space
abstractions

 Model solution-space relationships after problem-space
relationships

 May even start with one class per concept
 Name classes corresponding to real-world concepts

• Supports design for change: if problem structure
and solution structure similar, problem changes
should correspond to solution changes

• Supports design for division of labor: knowing the
decomposition of the problem, may help
decomposing the solution

• Supports design for understandability and reuse:
…

toad 62 15-214 Kästner

Low Representational Gap

Payment

amount

Sale

date
time

Pays-for

Payment

amount: Money

getBalance(): Money

Sale

date: Date
startTime: Time

getTotal(): Money
. . .

Pays-for

Domain Model
Noteworthy concepts in the domain.

Object Model
The object-oriented developer has taken inspiration from the real world domain in
creating software classes.

Therefore, the representational gap between how stakeholders conceive the domain,
and its representation in software, has been lowered.

1 1

1 1

A Payment in the Domain Model is a
concept, but a Payment in the
Object Model is a software class.
They are not the same thing, but the
former inspired the naming and
definition of the latter.

This reduces the representational
gap.

This is one of the big ideas in object
technology.

inspires
objects and

names in

toad 63 15-214 Kästner

Design Strategy: Information Hiding

• A module exposes the interface, but hides how it
implements it
 Interface must remain stable (or else rippling changes)
 Implementation may change freely

• Each interface represents a design decision and
modules hide remaining ones
 Remember System/360

• Identify stable and unstable parts of the problem
 E.g., if database will change, abstract behind database
interface

• If change predicted correctly: Only one module to
change

toad 64 15-214 Kästner

Design for Robustness

• Modular Protection: Errors and bugs unavoidable,
but exceptions should not leak across modules

• Good modules handle exceptional conditions
locally
 Local input validation and local exception handling where
possible

 Explicit interfaces with clear pre/post conditions
 Explicitly documented and checked exceptions where
exceptional conditions may propagate between modules

 Information hiding/encapsulation of critical code (likely
bugs, likely exceptions)

• Example
 Printer crash should not corrupt entire system
 Exception/infinite loop in rabbit AI should not freeze GUI
 Exception in shortest-path algorithm should not corrupt
graph

toad 65 15-214 Kästner

Summary

•5 design goals
Design for division of labor
Design for understandability
Design for change
Design for reuse
Design for robustness

•5 design strategies (so far)
Explicit interfaces (clear boundaries)
 Information hiding (hide likely changes)
 Low coupling (reduce dependencies)
High cohesion (one purpose per class)
 Low repr. gap (align requirements and impl.)

