
1 17-214

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Introduction	
	
Course	overview	and	introduction	to	software	design	
	
Charlie	Garrod									Chris	Timperley	

2 17-214

Software	is	everywhere	

3 17-214

Growth	of	code	and	complexity	over	time	

4 17-214

Blackout of 2003 Normal night-time image

5 17-214

6 17-214 15-313
Software
Engineering

6

7 17-214

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Introduction	
	
Course	overview	and	introduction	to	software	design	
	
Charlie	Garrod									Chris	Timperley	

8 17-214

binary tree

graph search

sorting

primes

GCD

9 17-214

Our goal: understanding both the building blocks and the
design principles for construction of software systems

From	programs	to	systems	

Writing	algorithms,	data	
structures	from	scratch	

	
Functions	with	inputs		

and	outputs	
	
Sequential	and	local	

computation	
	

Full	functional	
specifications	

Reuse	of	libraries,	
frameworks	
	

Asynchronous	and		
reactive	designs	

	
Parallel	and	distributed	

computation	
	
Partial,	composable,		

targeted	models	

10 17-214

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Introduction	
	
Course	overview	and	introduction	to	software	design	
	
	Charlie	Garrod									Chris	Timperley	

11 17-214

Objects	in	the	real	world	

12 17-214

Object-oriented	programming	

•  Programming	based	on	structures	
that	contain	both	data	and	methods	

public	class	Bicycle	{	
		private	final	Wheel	frontWheel,	rearWheel;	
		private	final	Seat	seat;	
		private	int	speed;	
		…	
	
		public	Bicycle(…)	{	…	}	
	
		public	void	accelerate()	{		
				speed++;		
		}	
	
		public	int	speed()	{	return	speed;	}	
}	

13 17-214

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Introduction	
	
Course	overview	and	introduction	to	software	design	
	
Charlie	Garrod									Chris	Timperley	

14 17-214

Semester	overview	

•  Introduction	to	Java	and	O-O	
•  Introduction	to	design	

–  Design	goals,	principles,	patterns	
•  Designing	classes	

–  Design	for	change	
–  Design	for	reuse	

•  Designing	(sub)systems	
–  Design	for	robustness	
–  Design	for	change	(cont.)	

•  Design	case	studies	
•  Design	for	large-scale	reuse	
•  Explicit	concurrency	

•  Crosscutting	topics:	
–  Modern	development	tools:	

IDEs,	version	control,	build	
automation,	continuous	
integration,	static	analysis	

–  Modeling	and	specification,	
formal	and	informal	

–  Functional	correctness:	Testing,	
static	analysis,	verification	

15 17-214

Sorting with a configurable order, version A

	
static	void	sort(int[]	list,	boolean	ascending)	{	
			…		
			boolean	mustSwap;	
			if	(ascending)	{	
						mustSwap	=	list[i]	>	list[j];	
			}	else	{	
						mustSwap	=	list[i]	<	list[j];	
			}	
			…	
}	
	

16 17-214

Sorting with a configurable order, version B
interface	Order	{	
		boolean	lessThan(int	i,	int	j);	
}	
	
class	AscendingOrder	implements	Order	{	
		public	boolean	lessThan(int	i,	int	j)	{	return	i	<	j;	}	
}	
class	DescendingOrder	implements	Order	{	
		public	boolean	lessThan(int	i,	int	j)	{	return	i	>	j;	}	
}	
	
static	void	sort(int[]	list,	Order	order)	{	
		…		
		boolean	mustSwap	=	
				order.lessThan(list[j],	list[i]);	
		…	
}	

17 17-214

Sorting with a configurable order, version B'

interface	Order	{	
		boolean	lessThan(int	i,	int	j);	
}	
	
final	Order	ASCENDING		=	(i,	j)	->	i	<	j;	
final	Order	DESCENDING	=	(i,	j)	->	i	>	j;	
	
static	void	sort(int[]	list,	Order	order)	{	
		…		
		boolean	mustSwap	=	
				order.lessThan(list[j],	list[i]);	
		…	
}	

18 17-214

Which version is better?

static	void	sort(int[]	list,	boolean	ascending)	{	
			…		
			boolean	mustSwap;	
			if	(ascending)	{	
						mustSwap	=	list[i]	>	list[j];	
			}	else	{	
						mustSwap	=	list[i]	<	list[j];	
			}	
			…	
}	

interface	Order	{	
		boolean	lessThan(int	i,	int	j);	
}	
final	Order	ASCENDING	=		(i,	j)	->	i	<	j;	
final	Order	DESCENDING	=	(i,	j)	->	i	>	j;	
	
static	void	sort(int[]	list,	Order	order)	{	
		…		
		boolean	mustSwap	=	
				order.lessThan(list[j],	list[i]);	
		…	
}	

Version A:

Version B':

19 17-214

It depends?

20 17-214

Software engineering is the branch of computer science that creates
practical, cost-effective solutions to computing and information
processing problems, preferably by applying scientific knowledge,
developing software systems in the service of mankind.

Software Engineering for the 21st Century: A basis for rethinking the curriculum
Manifesto, CMU-ISRI-05-108

21 17-214

Software engineering is the branch of computer science that creates
practical, cost-effective solutions to computing and information
processing problems, preferably by applying scientific knowledge,
developing software systems in the service of mankind.

Software engineering entails making decisions under
constraints of limited time, knowledge, and resources…

Engineering quality resides in engineering judgment…
Quality of the software product depends on the engineer’s
faithfulness to the engineered artifact…
Engineering requires reconciling conflicting constraints…
Engineering skills improve as a result of careful systematic
reflection on experience…
Costs and time constraints matter, not just capability…

Software Engineering for the 21st Century: A basis for rethinking the curriculum

Manifesto, CMU-ISRI-05-108

22 17-214

Goal	of	software	design	

•  For	each	desired	program	behavior	there	are	infinitely	many	
programs	
–  What	are	the	differences	between	the	variants?	
–  Which	variant	should	we	choose?	
–  How	can	we	create	a	variant	with	desired	properties?	

23 17-214

Metrics	of	software	quality,	i.e.,	design	goals	

Functional	
correctness	 Adherence	of	implementation	to	the	specifications	

Robustness	 Ability	to	handle	anomalous	events	

Flexibility	 Ability	to	accommodate	changes	in	specifications	

Reusability	 Ability	to	be	reused	in	another	application	

Efficiency	 Satisfaction	of	speed	and	storage	requirements	

Scalability	 Ability	to	serve	as	the	basis	of	a	larger	version	of	the	application	

Security	 Level	of	consideration	of	application	security	

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

24 17-214

A	typical	Intro	CS	design	process	

1.  Discuss	software	that	needs	to	be	written	
2.  Write	some	code	
3.  Test	the	code	to	identify	the	defects	
4.  Debug	to	find	causes	of	defects	
5.  Fix	the	defects	
6.  If	not	done,	return	to	step	1	

25 17-214

Better	software	design	

•  Think	before	coding:		broadly	consider	quality	attributes	
–  Maintainability,	extensibility,	performance,	…	

•  Propose,	consider	design	alternatives	
–  Make	explicit	design	decisions	

26 17-214

Using	a	design	process	

•  A	design	process	organizes	your	work	
•  A	design	process	structures	your	understanding	
•  A	design	process	facilitates	communication	

27 17-214

Preview:		Design	goals,	principles,	and	patterns	

•  Design	goals	enable	evaluation	of	designs	
–  e.g.	maintainability,	reusability,	scalability	

•  Design	principles	are	heuristics	that	describe	best	practices	
–  e.g.	high	correspondence	to	real-world	concepts	

•  Design	patterns	codify	repeated	experiences,	common	solutions	
–  e.g.	template	method	pattern	

28 17-214

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Introduction	
	
Course	overview	and	introduction	to	software	design	
	
Charlie	Garrod									Chris	Timperley	

29 17-214

Concurrency	

•  Roughly:		doing	more	than	one	thing	at	a	time	

30 17-214

Summary:		Course	themes	

•  Object-oriented	programming	
•  Code-level	design	
•  Analysis	and	modeling	
•  Concurrency	

31 17-214

Software	Engineering	(SE)	at	CMU	

•  17-214:		Code-level	design	
–  Extensibility,	reuse,	concurrency,	functional	correctness	

•  17-313:		Human	aspects	of	software	development	
–  Requirements,	teamwork,	scalability,	security,	scheduling,	costs,	risks,	

business	models	

•  17-413	Practicum,	17-415	Seminar,	Internship	
•  Various	courses	on	requirements,	architecture,	software	

analysis,	SE	for	startups,	etc.	
•  SE	Minor:	http://isri.cmu.edu/education/undergrad	

31

32 17-214

COURSE	ORGANIZATION	

33 17-214

Preconditions	

•  15-122	or	equivalent	
–  Two	semesters	of	programming	
–  Knowledge	of	C-like	languages	

•  21-127	or	equivalent	
–  Familiarity	with	basic	discrete	math	concepts	

•  Specifically:	
–  Basic	programming	skills	
–  Basic	(formal)	reasoning	about	programs	

•  Pre/post	conditions,	invariants,	formal	verification	
–  Basic	algorithms	and	data	structures	

•  Lists,	graphs,	sorting,	binary	search,	etc.	

34 17-214

Learning	goals	

•  Ability	to	design	and	implement	medium-scale	programs	
•  Understanding	OO	programming	concepts	&	design	decisions	
•  Proficiency	with	basic	quality	assurance	techniques	for	

functional	correctness	
•  Fundamentals	of	concurrency	
•  Practical	skills	

35 17-214

Course	staff	

•  Charlie	Garrod	
charlie@cs.cmu.edu	
Wean	5120	

	
	
	
•  Chris	Timperley	

ctimperley@cmu.edu	
Wean	4206	

	

	
•  Teaching	assistants:		Alex,	Alice,	Emily,	Jun,	Michelle,	Shruti,	Tianyang,	

Tiffany,	and	Yang	

36 17-214

Course	meetings	

•  Lectures:	Tuesday	and		Thursday,	noon	–	1:20pm,	HoA	160	
–  Electronic	devices	discouraged	

•  Recitations:		Wednesdays	9:30	-	…	-	3:20pm	
–  Supplementary	material,	hands-on	practice,	feedback	
–  Bring	your	laptop	

•  Office	hours:		see	course	web	page	
–  https://www.cs.cmu.edu/~charlie/courses/17-214/	

Recitation
attendance
is required

Smoking
Section

37 17-214

Infrastructure	

•  Course	website:	http://www.cs.cmu.edu/~charlie/courses/17-214	
–  Schedule,	office	hours	calendar,	lecture	slides,	policy	documents	

•  Tools	
–  Git,	Github:	Assignment	distribution,	hand-in,	and	grades	
–  Piazza:	Discussion	board	
–  IntelliJ	or	Eclipse:	Recommended	for	code	development	(other	IDEs	are	fine)	
–  Gradle,	Travis-CI,	Checkstyle,	Findbugs:	Practical	development	tools	

•  Assignments	
–  Homework	1	available	tomorrow	

•  First	recitation	is	tomorrow	
–  Introduction	to	Java	and	the	tools	in	the	course	
–  Install	Git,	Java,	some	IDE,	Gradle	beforehand	

38 17-214

Textbooks	

•  Required	course	textbooks	(electronically	
available	through	CMU	library):		
–  Joshua	Bloch.	Effective	Java,	Third	Edition.	

Addison-Wesley,	ISBN	978-0-13-468599-1.	
–  Craig	Larman.		Applying	UML	and	Patterns.		3rd	

Edition.		Prentice	Hall,	ISBN	978-0321356680.	

•  Additional	readings	on	design,	Java,	and	
concurrency	on	the	course	web	page	

39 17-214

Approximate	grading	policy	

•  50%	assignments	
•  20%	midterms	(2	x	10%	each)	
•  20%	final	exam	
•  10%	quizzes	and	participation	

This	course	does	not	have	a	fixed	letter	grade	policy;	i.e.,	the	final	
letter	grades	will	not	be	A=90-100%,	B=80-90%,	etc.	

40 17-214

Collaboration	policy		(also	see	the	course	syllabus)	

•  We	expect	your	work	to	be	your	own	
–  You	must	clearly	cite	external	resources	so	that	we	can	evaluate	your	own	

personal	contributions.	

•  Do	not	release	your	solutions	(not	even	after	end	of	semester)	
•  Ask	if	you	have	any	questions	
•  If	you	are	feeling	desperate,	please	mail/call/talk	to	us	

–  Always	turn	in	any	work	you've	completed	before	the	deadline	

•  We	use	cheating	detection	tools	
•  You	must	sign	and	return	a	copy	of	the	collaboration	policy	

before	we	will	grade	your	work:		https://goo.gl/CBXKQK	
	

41 17-214

Late	day	policy	

•  You	may	turn	in	each*	homework	up	to	2	days	late	
•  You	have	five	free	late	days	per	semester	

–  10%	penalty	per	day	after	free	late	days	are	used	
•  We	don't	accept	work	3	days	late	
•  See	the	syllabus	for	additional	details	
•  Got	extreme	circumstances?		Talk	to	us	

42 17-214

10%	quizzes	and	participation	

•  Recitation	participation	counts	toward	your	participation	grade	
•  Lecture	has	in-class	quizzes	

43 17-214

Summary	

•  Software	engineering	requires	decisions,	judgment	
•  Good	design	follows	a	process	
•  You	will	get	lots	of	practice	in	17-214!	

