Principles of Software Construction:
Objects, Design, and Concurrency

Invariants, immutability, and testing

Charlie Garrod Chris Timperley

Carnegie Mellon University
School of Computer Science
®

institute for
I S SOFTWARE
RESEARCH

[]

institute f
17-214 1 e
RESEARCH

Administrivia

- Homework 4a due Thursday at 11:59 p.m.
— Mandatory design review meeting before the homework deadline

- Final exam is Monday, December 9th, 1-4pm

®
17-214 2 SOFTWARE
RESEARCH

Outline

Class invariants and defensive copying

Immutability

Testing and coverage

Testing for complex environments

[]
institute f
17-214 3 mhel
RESEARCH

Class invariants

* Critical properties of the fields of an object
* Established by the constructor

* Maintained by public method invocations
— May be invalidated temporarily during method execution

®
stitute |
17-214 4 SOFTWARE
RESEARCH

Safe languages and robust programs

* Unlike C/C++, Java language safe
— Immune to buffer overruns, wild pointers, etc.

* Makes it possible to write robust classes
— Correctness doesn’t depend on other modules
— Even in safe language, requires programmer effort

®
institute F
17-214 5 SOFTWARE
RESEARCH

Defensive programming

* Assume clients will try to destroy invariants
— May actually be true (malicious hackers)
— More likely: honest mistakes

* Ensure class invariants survive any inputs

— Defensive copying
— Minimizing mutability

®
17-214 6 SOFTWARE
RESEARCH

This class is not robust

public final class Period {
private final Date start, end; // Invariant: start <= end

/**
* @throws IllegalArgumentException if start > end
* @throws NullPointerException if start or end is null
*/
public Period(Date start, Date end) {
if (start.after(end))
throw new IllegalArgumentException(start +
this.start = start;
this.end = end;

> " + end);

}

public Date start() { return start; }
public Date end() { return end; }
... // Remainder omitted

17-214 - e
RESEARCH

The problem: Date is mutable
Obsolete as of Java 8; sadly not deprecated even in Java 11

// Attack the internals of a Period instance
Date start = new Date(); // (The current time)
Date end = new Date(); // " " "
Period p = new Period(start, end);
end.setYear(78); // Modifies internals of p!

®
institute f
17-214 8 SOFTWARE
RESEARCH

The solution: defensive copying

// Repaired constructor - defensively copies parameters
public Period(Date start, Date end) {

this.start = new Date(start.getTime());

this.end = new Date(end.getTime());

if (this.start.after(this.end))

throw new IllegalArgumentException(start + " > "+
end) ;

®
17-214 9 SOFTWARE
RESEARCH

A few important details

* Copies made before checking parameters
Validity check performed on copies

Eliminates window of vulnerability between validity check & copy

e Thwarts multithreaded TOCTOU attack
— Time-Of-Check-To-Time-Of-U

// BROKEN - Permits multithreaded attack!
public Period(Date start, Date end) {
if (start.after(end))
throw new IllegalArgumentException(start + " > " + end);
// Window of vulnerability
this.start = new Date(start.getTime());
this.end = new Date(end.getTime());

[]
- - F
17-214 10 SOFTWARE
RESEARCH

Another important detail

e Used constructor, not clone, to make copies
— Necessary because Date class is nonfinal
— Attacker could implement malicious subclass
* Records reference to each extant instance
* Provides attacker with access to instance list

 But who uses clone, anyway? [EJ Item 11]

17-214 11 IRl
RESEARCH

Unfortunately, constructors are only half the battle

// Accessor attack on internals of Period
Period p = new Period(new Date(), new Date());

Date d = p.end();
p.end.setYear(78); // Modifies internals of p!

[]
insti f
17-214 12 ‘s“é%t#éme
RESEARCH

The solution: more defensive copying

// Repaired accessors - defensively copy fields
public Date start() {

return new Date(start.getTime());

}
public Date end() {

return new Date(end.getTime());

Now Period class is robust!

[]
17-214 13 e
RESEARCH

Summary

 Don’t incorporate mutable parameters
into object; make defensive copies

e Return defensive copies of mutable fields...
 Or return unmodifiable view of mutable fields

* Real lesson — use immutable components
— Eliminates the need for defensive copying

[]
17-214 14 e
RESEARCH

Outline

Class invariants and defensive copying

Immutability

Testing and coverage

Testing for complex environments

- - F
17-214 15 SOFTWARE
RESEARCH

Immutable classes

e Class whose instances cannot be modified

 Examples: String, Integer, BigInteger, Instant
 How, why, and when to use them

[]
17-214 16 e
RESEARCH

How to write an immutable class

 Don’t provide any mutators

* Ensure that no methods may be overridden
 Make all fields final

* Make all fields private

* Ensure security of any mutable components

[]
17-214 17 e
RESEARCH

Immutable class example

public final class Complex {
private final double re, im;

public Complex(double re, double im) {
this.re = re;
this.im = im;

}

// Getters without corresponding setters
public double realPart() { return re; }
public double imaginaryPart() { return im; }

// minus, times, dividedBy similar to add
public Complex plus(Complex c) {
return new Complex(re + c.re, im + c.im);

}

- - F
17-214 18 SOFTWARE
RESEARCH

Immutable class example (cont.)
Nothing interesting here

@Override public boolean equals(Object o) {
if (!(o instanceof Complex)) return false;
Complex c¢ = (Complex) o;
return Double.compare(re, c.re) == 0 &&
Double.compare(im, c.im) == 0;

@Override public int hashCode() {
return 31 * Double.hashCode(re) + Double.hashCode(im);

@Override public String toString() {
return String.format("%d + %di", re, im)";

17-214 19 IRl
RESEARCH

Distinguishing characteristic

* Return new instance instead of modifying
* Functional programming

 May seem unnatural at first

 Many advantages

[]
m—
17-214 20 SOFTWARE
RESEARCH

Advantages

e Simplicity

* Inherently Thread-Safe

* Can be shared freely

* No need for defensive copies
* Excellent building blocks

o
institute for
17-2 14 21 SOFTWARE
RESEARCH

Major disadvantage

e Separate instance for each distinct value

* Creating these instances can be costly
BigInteger moby = ...; // A million bits long
moby = moby.flipBit(®); // Ouch!

* Problem magnified for multistep operations

— Well-designed immutable classes provide common multistep operations

* e.g.,, myBigInteger.modPow(exponent, modulus)
— Alternative: mutable companion class

* e.g.,, StringBuilder for String

[]
17-214 22 e
RESEARCH

When to make classes immutable

* Always, unless there's a good reason not to

* Always make small “value classes” immutable!
— Examples: Color, PhoneNumber, Unit
— Date and Point were mistakes!
— Experts often use long instead of Date

[]
- - F
17-214 23 SOFTWARE
RESEARCH

When to make classes mutable

* Class represents entity whose state changes
— Real-world - BankAccount, TrafficlLight
— Abstract - Iterator, Matcher, Collection
— Process classes - Thread, Timer

 If class must be mutable, minimize mutability
— Constructors should fully initialize instance
— Avoid reinitialize methods

[]
17-214 24 e
RESEARCH

Outline

Class Invariants

Immutability

Testing and coverage

Testing for complex environments

- - F
17-214 25 SOFTWARE
RESEARCH

Why do we test?

RUgE VY

-

QR0 7t 65
mm v

Tage R 43

nEnTE

institute for
17-214 26 SO

Testing decisions

 Who tests?
— Developers who wrote the code
— Quality Assurance Team and Technical Writers
— Customers

e When to test?

— Before and during development
— After milestones

— Before shipping

— After shipping

 When to stop testing?

[]
17-214 27 IRl
RESEARCH

Test driven development (TDD)

* Write tests before code
* Never write code without a failing test
* Code until the failing test passes

gy

Uﬁ: \‘f a Make the
\w\ 3 + csl' SS
lest s
R /
\\\‘h\ /,\(/
\\\.‘ i/

From Growing Object-Oriented Software by Nat Pryce and Steve Freeman
http:/www.growing-object-oriented-software.com/figures.html

@sebrose http:/cucumber.io

17-214

e Sthcleson Wosdony Fegnatire Sories

TEST-DRIVEN ke
DEVELOPMENT

By ExampLi

KeENT BECK

institute for
28 | S SOFTWARE
RESEARCH

Why use test driven development?

Forces you to think about interfaces early

Higher product quality

— Better code with fewer defects

Higher test suite quality

Higher productivity

It’s fun to watch tests pass

[]
17-214 29 IRl
RESEARCH

TDD in practice

 Empirical studies on TDD show:
— May require more effort
— May improve quality and save time

e Selective use of TDD is best

* Always use TDD for bug reports
— Regression tests

[]
17-214 30 SOFTWARE
RESEARCH

Testing decisions

 Who tests?
— Developers who wrote the code
— Quality Assurance Team and Technical Writers
— Customers

e When to test?

— Before and during development
— After milestones

— Before shipping

— After shipping

* When to stop testing?

[]
17-214 31 SOFTWARE
RESEARCH

How much testing?

* You generally cannot test all inputs
— Too many — usually infinite
— Limited time and resources

 But when it works, exhaustive testing is best!

[]
- - F
17-214 32 SOFTWARE
RESEARCH

What makes a good test suite?

* Provides high confidence that code is correct

* Short, clear, and non-repetitious
— Prefer smaller, more-directed tests
— More difficult for test suites than regular code
— Realistically, test suites will look worse

e Can be fun to write if approached in this spirit

[]
17-214 33 SOFTWARE
RESEARCH

Black-box testing

* Look at specifications, not code
* Test representative cases

* Test boundary conditions

e Test invalid (exception) cases
 Don’t test unspecified cases

- - F
17-214 34 SOFTWARE
RESEARCH

White-box testing

* Look at specifications and code

* Write tests to:
— Check interesting implementation cases
— Maximize branch coverage

/**

* Returns a BigInteger whose value is the greatest common divisor of
* {@code abs(this)} and {@code abs(val)}. Returns 0 if

0 * {@code this == 0 && val == 0}.

2471 *
* @param val value with which the GCD is to be computed.

ged a
* @return {@code GCD(abs(this), abs(val))}
public BigInteger gcd(BigInteger val) ' &
) public BigInteger «gcd(BigInteger val) {

Returns a BigInteger whose value is the greatest common divisor of abs(this) and abs(val). Returns 0 if this == @ && 3 i A

if (val.signum == 0)
val == 0. :

return this.abs();

Parameters: else if (this.signum == 0)
val - value with which the GCD is to be computed. return val.abs();

Returns:

GCD(abs(this), abs(val)) MutableBigInteger a = new MutableBigInteger(this);

MutableBigInteger b = new MutableBigInteger(val);
MutableBigInteger result = a.hybridGCD(b);

return result.toBiglnteger(1);

institute |
17-214 35 SOFTWARE
RESEARCH

Code coverage metrics

Method coverage — coarse
Branch coverage — fine

Path coverage —too fine
— Cost is high, value is low
— (Related to cyclomatic complexity)

[]
- - F
17-214 36 SOFTWARE
RESEARCH

Coverage metrics: useful but dangerous

e Can give false sense of security

 Examples of what coverage analysis could miss
— Data values
— Concurrency issues — race conditions, etc.
— Usability problems
— Customer requirements issues

* High branch coverage is not sufficient

o
institute for
17-214 37 SO

Summary: Test suites — ideal and real

* |deal test suites would
— Uncover all errors in code
— Test “non-functional” attributes such as performance and security
— Minimum size and complexity

e Real test Suites
— Uncover some portion of errors in code

— Have errors of their own
— Are nonetheless priceless

17-214 38 SOFTWARE
RESEARCH

Automated Test Generation

- institute ror
17-214 39 [BYf sorme

Fuzz Testing

Also known as random input testing, torture testing

* Try “random” inputs, as many as you can
— Choose inputs to tickle interesting cases
— Knowledge of implementation helps here

Seed random number generator so tests repeatable

Successful in some domains (parsers, file processing, ...)
— But, many tests execute similar paths
— Generally hard to reach certain program states
— Often finds only superficial errors

- - F
17-214 40 SOFTWARE
RESEARCH

Oracle Problem

How should my program behave for any given input?

[
*
*
*
*
*
*

o

public BigInteger «gcd(BigInteger val) {

Returns a BigInteger whose value is the greatest common divisor of
{@code abs(this)} and {@code abs(val)}. Returns 0 if
{@code this == 0 && val == 0}.

@param val value with which the GCD is to be computed.
@return {@code GCD(abs(this), abs(val))}

if (val.signum ==
return this.abs();
else if (this.signum == 0)
return val.abs();

new MutableBigInteger(this);
new MutableBigInteger(val);

MutableBigInteger
MutableBigInteger

a
b

MutableBigInteger result = a.hybridGCD(b);

return result.toBigInteger(1);

Output

17-214

IS

institute for
SOFTWARE
RESEARCH

41

A simple oracle: The program shouldn’t crash

American Fuzzy Lop (AFL)

+ No need to manually specify an oracle!

process timing " overall results
+ Relatively low engineering effort S g b S i fos

0 days, 0 hrs, 1 min, 51 sec 1
. . . cycle progress map coverage
- Limited to crashing bugs P o Y G
0 (0.00%) 2.55 bits/tuple
stage progress findings in depth
interest 32/8 128 (65.64%)
0/9990 (0.00%) 85 (43.59%)
654k 0 (0 unique)
2306/sec 1 (1 unique)
fuzzing strategy yields
88/14.4k, 6/14.4k, 6/14.4k
0/1804, 0/1786, 1/1750 178
31/126k, 3/45.6k, 1/17.8k 114
1/15.8k, 4/65.8k, 6/78.2k 0
34/254k, 0/0 0
2876 B/931 (61.45% gain) 0

path geometry
3

https://domesticanimalbreeds.com/american-fuzzy-lop-rabbit-everything-you-need-to-know/
http://Icamtuf.coredump.cx/afl/
https://embed.cs.utah.edu/csmith/

insti f
17-214 42 ‘s“é%t#sase
RESEARCH

https://domesticanimalbreeds.com/american-fuzzy-lop-rabbit-everything-you-need-to-know/
http://lcamtuf.coredump.cx/afl/
https://embed.cs.utah.edu/csmith/

Another alternative: Differential Testing

Use an existing, functionally-equivalent implementation as a reference.
(E.g., a correct implementation with undesirable non-functional properties.)

RadixSort BubbleSort

1.0.0 1.0.0

[J
17-214 43 SOFTWARE
RESEARCH

Another alternative: Differential Testing

Alternatively, we can use an older, correct implementation.

1
"

RadixSort RadixSort

1.0.4 1.0.3

. . .
17-214 a4 e

RESEARCH

No reference implementation? Property-based testing

Unit testing generally relies on checking concrete input-output
examples. Property-based testing checks that certain properties
hold true for all possible inputs.

- Attempts to generates inputs that violate properties.
- Easier to specify than expected outputs!
- What properties should | check?

@RunWith(JUnitQuickcheck.class)
public class StringProperties {
@Property public void concatenationLength(String s1, String s2) {
assertEquals(sl.length() + s2.length(), (s1 + s2).length());

}

https://github.com/pholser/junit-quickcheck

[]
17-214 45 e
RESEARCH

https://github.com/pholser/junit-quickcheck

EvoSuite: Automated Test Generation for Java

EVESUITE .

Automatic Test Suite Generation for Java

Generates minimal,

coverage-maximizing test suites.

| i e Uses dynamic specification inference
to suggest assertions that can be

| used by those tests.

CONTACT ABOUT pleld

About

EvoSuite

RECENT POSTS

To find defects in software, one needs test cases that execute the software systemati-
cally, and oracles that assess the correctness of the observed behavior when running
these test cases. EvoSuite is a tool that automatically generates test cases with asser-
tions for classes written in Java code. To achieve this, EvoSuite applies a novel hybrid
approach that generates and optimizes whole test suites towards satisfying a cover-
age criterion. For the produced test suites, EvoSuite suggests possible oracles by
adding small and effective sets of assertions that concisely summarize the current be-
havior; these assertions allow the developer to detect deviations from expected behav-
for, and to capture the current behavior in order to protect against future defects
breaking this behaviour.

Main features
« Generation of JUnit 4 tests for the selected classes et
* Optimization of different coverage criteria, like lines, branches, outputs and mu-
tation testing

http://www.evosuite.org/evosuite/

17-214 as [oo

RESEARCH

http://www.evosuite.org/evosuite/

Summary

- Automated test generation is not a panacea.
— Can be difficult to reach “interesting” program states
— Requires an oracle
— Cheap to automatically generate tests, but expensive to maintain.

- But it is a useful technique!
— Complements developer-written tests
— Can be better at identifying certain bug classes

17-214 a7 IRl
RESEARCH

Outline

Class invariants

Immutability

Testing and coverage

Testing for complex environments

- - F
17-214 48 SOFTWARE
RESEARCH

Problems when testing some apps

e User-facing applications
— Users click, drag, etc., and interpret output
— Timing issues

* Testing against big infrastructure

— Databases, web services, etc.

Real world effects

— Printing, mailing documents, sensor noise, etc.

* Collectively comprise the test environment

[]
17-214 49 e
RESEARCH

Example — Tiramisu app

* Mobile route planning app

. . i List View
e Android user interface E Main Map -

e Backend uses live PAT data

finthrop,
No Service © 10:43AM @ 7 100% &3 A

- Berlin-Alexanderplatz
o X

a2\ nO

Prenzlauer Berg

S

S werssensee F T

s\ « Forbes Ave at Hamburg Bldg .\y

~ C .
e Ao 2 min walk
) A N
ARK /
Prenzl

rBerg 3 Way
rk
& P
Vlkt'k oes ‘
Prenzlauer Berg F Ofbes AV
(S 475

Forbes Ave

o

Volkspark
5 2 Volkspark
Friedrichshain

; 0; Hillman Center for
rlin [y - SR ! Smith Hall | Future Generatior
L . - Pittat echnologies
Friedrichshain 35 tsburgh
: S
i @

3
|
(S) > 5
_ = Roberts Ha
- 96a / EErng
e

RXS)

oy

(S)
\\Qg‘gt
Facilities ‘ \]
10:44 AM - 11:17 AM (33 min) f~’d"‘ agement @
£>Os7>@s9> gk Services Bidg

17-214 Via: Beriin Alexanderplatz (5) Google

Doherty Hall

Another example

T o = § 19:07

FacebookFriendMap
friends

* 3rd party Facebook apps
e Android user interface
e Backend uses Facebook data

17-214

Testing in real environments

Android

. ' Code | Facebook
client

void buttonClicked() {
render(getFriends());

}

List<Friend> getFriends() {

Connection c¢ = http.getConnection();
FacebookApi api = new FacebookApi(c);
List<Node> persons = api.getFriends("john");
for (Node personl : persons) {

for (Node person2 : persons) {

}
}

return result;

17-214 52

institute for
SOFTWARE
RESEARCH

Eliminating Android dependency?

Test

. ' Code | Facebook
driver

@Test void testGetFriends() {
. // A Junit test

}

List<Friend> getFriends() {

Connection c¢ = http.getConnection();
FacebookApi api = new FacebookApi(c);
List<Node> persons = api.getFriends("john");
for (Node personl : persons) {

for (Node person2 : persons) {

}
}

return result;

17-214 53

institute for
SOFTWARE
RESEARCH

That won’t quite work

* GUI applications process many thousands of events

e Solution: automated GUI testing frameworks
— Allow streams of GUI events to be captured, replayed

e These tools are sometimes called robots

[]
17-214 54 SOFTWARE
RESEARCH

The more general case: Record and replay

https://github.com/SeleniumHQ/selenium
https://netflix.github.io/pollyjs/#/
https://wiki.ros.org/rosbag

17-214

P8LLYJS

Record, replay, and stub HTTP interactions.

Node &Browser Support # simple, Powerful, & Intuitive API

NETFLIX

Yl

— T
‘B

L LLE
AR A TRRAECT T

‘ 5 T
A T TEhDIU S

:::ROS

ss [H]

L]
i III=I
ﬁmw||nmu|mm
- |

04 17, ML Gt

https://github.com/SeleniumHQ/selenium
https://netflix.github.io/pollyjs/#/
https://wiki.ros.org/rosbag

Eliminating Facebook dependency?

Test Mock
driver ' Code | Facebook

@Test void testGetFriends() {
... // A Junit test

}

List<Friend> getFriends() {
FacebookApi api = new MockFacebook(c);
List<Node> persons = api.getFriends("john");
for (Node personl : persons) {
for (Node person2 : persons) {
}
}

return result;

17-214 56

institute for
SOFTWARE
RESEARCH

That won’t quite work!

* Changing production code for testing unacceptable
* Problem caused by constructor in code

* Instead of constructor, use special factory that allows alternative
implementations

* Use tools to facilitate this sort of testing
— Dependency injection tools, e.g., Dagger, Guice, Spring
— Mock object frameworks such as Mockito

[]
17-214 57 SOFTWARE
RESEARCH

Fault injection

Test Mock
driver Code | Facebook

* Mocks can emulate failures such as timeouts

e Allows you to verify the robustness of system against faults that
you can’t generate at will

https://github.com/mrwilson/byte-monkey
https://blog.probablyfine.co.uk/2016/05/30/announcing-byte-monkey.html

17-214 58 SOFTWARE
RESEARCH

https://github.com/mrwilson/byte-monkey
https://blog.probablyfine.co.uk/2016/05/30/announcing-byte-monkey.html

Advantages of using mocks

e Test code locally without large environment
* Enable deterministic tests (in some cases)
* Enable fault injection

e Can speed up test execution
— e.g., avoid slow database access

e Can simulate functionality not yet implemented
* Enable test automation

[]
17-214 59 SOFTWARE
RESEARCH

Design Implications

* Think about testability when writing code

* When a mock may be appropriate, design for it
* Hide subsystems behind an interfaces

* Use factories, not constructors to instantiate

* Use appropriate tools

— Dependency injection or mocking frameworks

[]
17-214 60 e
RESEARCH

Hardware differences matter...

=
s
%
i
&
g
z

https://engineering.fb.com/android/the-mobile-device-lab-at-the-prineville-data-center/
https://medium.com/netflix-techblog/automated-testing-on-devices-fc5a39f47e24
https://ai.google/research/teams/brain/robotics/

[
17-214 61 e
RESEARCH

https://engineering.fb.com/android/the-mobile-device-lab-at-the-prineville-data-center/
https://medium.com/netflix-techblog/automated-testing-on-devices-fc5a39f47e24
https://ai.google/research/teams/brain/robotics/

More Testing in 15-313

Foundations of Software Engineering

 Manual testing

* Security testing, penetration testing
* Fuzz testing for reliability

e Usability testing

* GUI/Web testing

* Regression testing

* Property-based testing

* Differential testing

* Stress/soak testing

[]
o
17-214 62 ‘s”é%%\sg
RESEARCH

Conclusion

 To maintain class invariants

— Minimize mutability

— Make defensive copies where required
* Interface testing is critical

— Design interfaces to facilitate testing
— Write creative test suites that maximize power-to-weight ratio
— Coverage tools can help gauge test suite quality

e Testing apps with complex environments requires added effort

17-214 63 e
RESEARCH

