
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Invariants, immutability, and testing

Charlie Garrod Chris Timperley

217-214

Administrivia

• Homework 4a due Thursday at 11:59 p.m.
– Mandatory design review meeting before the homework deadline

• Final exam is Monday, December 9th, 1–4pm

317-214

Outline

• Class invariants and defensive copying

• Immutability

• Testing and coverage

• Testing for complex environments

417-214

Class invariants

• Critical properties of the fields of an object

• Established by the constructor

• Maintained by public method invocations
– May be invalidated temporarily during method execution

517-214

Safe languages and robust programs

• Unlike C/C++, Java language safe
– Immune to buffer overruns, wild pointers, etc.

• Makes it possible to write robust classes
– Correctness doesn’t depend on other modules

– Even in safe language, requires programmer effort

617-214

Defensive programming

• Assume clients will try to destroy invariants
– May actually be true (malicious hackers)

– More likely: honest mistakes

• Ensure class invariants survive any inputs
– Defensive copying

– Minimizing mutability

717-214

This class is not robust

public final class Period {
 private final Date start, end; // Invariant: start <= end

 /**
 * @throws IllegalArgumentException if start > end
 * @throws NullPointerException if start or end is null
 */
 public Period(Date start, Date end) {
 if (start.after(end))
 throw new IllegalArgumentException(start + " > " + end);
 this.start = start;
 this.end = end;
 }

 public Date start() { return start; }
 public Date end() { return end; }
 ... // Remainder omitted
}

817-214

The problem: Date is mutable
Obsolete as of Java 8; sadly not deprecated even in Java 11

// Attack the internals of a Period instance

Date start = new Date(); // (The current time)

Date end = new Date(); // " " "

Period p = new Period(start, end);

end.setYear(78); // Modifies internals of p!

917-214

The solution: defensive copying

// Repaired constructor - defensively copies parameters

public Period(Date start, Date end) {

 this.start = new Date(start.getTime());

 this.end = new Date(end.getTime());

 if (this.start.after(this.end))

 throw new IllegalArgumentException(start + " > "+
end);

}

1017-214

A few important details

• Copies made before checking parameters

• Validity check performed on copies

• Eliminates window of vulnerability between validity check & copy

• Thwarts multithreaded TOCTOU attack
– Time-Of-Check-To-Time-Of-U

 // BROKEN - Permits multithreaded attack!

 public Period(Date start, Date end) {

 if (start.after(end))
 throw new IllegalArgumentException(start + " > " + end);

 // Window of vulnerability

 this.start = new Date(start.getTime());

 this.end = new Date(end.getTime());

 }

1117-214

Another important detail

• Used constructor, not clone, to make copies
– Necessary because Date class is nonfinal

– Attacker could implement malicious subclass

• Records reference to each extant instance

• Provides attacker with access to instance list

• But who uses clone, anyway? [EJ Item 11]

1217-214

Unfortunately, constructors are only half the battle

// Accessor attack on internals of Period

Period p = new Period(new Date(), new Date());

Date d = p.end();

p.end.setYear(78); // Modifies internals of p!

1317-214

The solution: more defensive copying

// Repaired accessors - defensively copy fields

public Date start() {

 return new Date(start.getTime());

}

public Date end() {

 return new Date(end.getTime());

}

Now Period class is robust!

1417-214

Summary

• Don’t incorporate mutable parameters
into object; make defensive copies

• Return defensive copies of mutable fields…
• Or return unmodifiable view of mutable fields

• Real lesson – use immutable components
– Eliminates the need for defensive copying

1517-214

Outline

• Class invariants and defensive copying

• Immutability

• Testing and coverage

• Testing for complex environments

1617-214

Immutable classes

• Class whose instances cannot be modified

• Examples: String, Integer, BigInteger, Instant

• How, why, and when to use them

1717-214

How to write an immutable class

• Don’t provide any mutators

• Ensure that no methods may be overridden

• Make all fields final

• Make all fields private

• Ensure security of any mutable components

1817-214

public final class Complex {
 private final double re, im;

 public Complex(double re, double im) {
 this.re = re;
 this.im = im;
 }

 // Getters without corresponding setters
 public double realPart() { return re; }
 public double imaginaryPart() { return im; }

 // minus, times, dividedBy similar to add
 public Complex plus(Complex c) {
 return new Complex(re + c.re, im + c.im);
 }

Immutable class example

1917-214

 @Override public boolean equals(Object o) {

 if (!(o instanceof Complex)) return false;

 Complex c = (Complex) o;

 return Double.compare(re, c.re) == 0 &&

 Double.compare(im, c.im) == 0;

 }

 @Override public int hashCode() {

 return 31 * Double.hashCode(re) + Double.hashCode(im);

 }

 @Override public String toString() {

 return String.format("%d + %di", re, im)";

 }

}

Immutable class example (cont.)
Nothing interesting here

2017-214

Distinguishing characteristic

• Return new instance instead of modifying

• Functional programming

• May seem unnatural at first

• Many advantages

2117-214

Advantages

• Simplicity

• Inherently Thread-Safe

• Can be shared freely

• No need for defensive copies

• Excellent building blocks

2217-214

Major disadvantage

• Separate instance for each distinct value

• Creating these instances can be costly
 BigInteger moby = ...; // A million bits long

 moby = moby.flipBit(0); // Ouch!

• Problem magnified for multistep operations
– Well-designed immutable classes provide common multistep operations

• e.g., myBigInteger.modPow(exponent, modulus)

– Alternative: mutable companion class

• e.g., StringBuilder for String

2317-214

When to make classes immutable

• Always, unless there's a good reason not to

• Always make small “value classes” immutable!
– Examples: Color, PhoneNumber, Unit

– Date and Point were mistakes!

– Experts often use long instead of Date

2417-214

When to make classes mutable

• Class represents entity whose state changes
– Real-world - BankAccount, TrafficLight

– Abstract - Iterator, Matcher, Collection

– Process classes - Thread, Timer

• If class must be mutable, minimize mutability
– Constructors should fully initialize instance

– Avoid reinitialize methods

2517-214

Outline

• Class Invariants

• Immutability

• Testing and coverage

• Testing for complex environments

2617-214

Why do we test?

2717-214

Testing decisions

• Who tests?
– Developers who wrote the code

– Quality Assurance Team and Technical Writers

– Customers

• When to test?
– Before and during development

– After milestones

– Before shipping

– After shipping

• When to stop testing?

2817-214

Test driven development (TDD)

• Write tests before code

• Never write code without a failing test

• Code until the failing test passes

2917-214

Why use test driven development?

• Forces you to think about interfaces early

• Higher product quality
– Better code with fewer defects

• Higher test suite quality

• Higher productivity

• It’s fun to watch tests pass

3017-214

TDD in practice

• Empirical studies on TDD show:
– May require more effort

– May improve quality and save time

• Selective use of TDD is best

• Always use TDD for bug reports
– Regression tests

3117-214

Testing decisions

• Who tests?
– Developers who wrote the code

– Quality Assurance Team and Technical Writers

– Customers

• When to test?
– Before and during development

– After milestones

– Before shipping

– After shipping

• When to stop testing?

3217-214

How much testing?

• You generally cannot test all inputs
– Too many – usually infinite

– Limited time and resources

• But when it works, exhaustive testing is best!

3317-214

What makes a good test suite?

• Provides high confidence that code is correct

• Short, clear, and non-repetitious
– Prefer smaller, more-directed tests

– More difficult for test suites than regular code

– Realistically, test suites will look worse

• Can be fun to write if approached in this spirit

3417-214

Black-box testing

• Look at specifications, not code

• Test representative cases

• Test boundary conditions

• Test invalid (exception) cases

• Don’t test unspecified cases

3517-214

White-box testing

• Look at specifications and code

• Write tests to:
– Check interesting implementation cases

– Maximize branch coverage

3617-214

Code coverage metrics

• Method coverage – coarse
• Branch coverage – fine
• Path coverage – too fine

– Cost is high, value is low
– (Related to cyclomatic complexity)

• ...

3717-214

Coverage metrics: useful but dangerous

• Can give false sense of security

• Examples of what coverage analysis could miss
– Data values

– Concurrency issues – race conditions, etc.

– Usability problems

– Customer requirements issues

• High branch coverage is not sufficient

3817-214

Summary: Test suites – ideal and real

• Ideal test suites would
– Uncover all errors in code

– Test “non-functional” attributes such as performance and security

– Minimum size and complexity

• Real test Suites
– Uncover some portion of errors in code

– Have errors of their own

– Are nonetheless priceless

3917-214

Automated Test Generation

4017-214

Fuzz Testing

• Also known as random input testing, torture testing

• Try “random” inputs, as many as you can
– Choose inputs to tickle interesting cases

– Knowledge of implementation helps here

• Seed random number generator so tests repeatable

• Successful in some domains (parsers, file processing, ...)
– But, many tests execute similar paths

– Generally hard to reach certain program states

– Often finds only superficial errors

4117-214

Oracle Problem

How should my program behave for any given input?

Oracle

Input

Output

4217-214

A simple oracle: The program shouldn’t crash

American Fuzzy Lop (AFL)

https://domesticanimalbreeds.com/american-fuzzy-lop-rabbit-everything-you-need-to-know/
http://lcamtuf.coredump.cx/afl/
https://embed.cs.utah.edu/csmith/

+ No need to manually specify an oracle!
+ Relatively low engineering effort
- Limited to crashing bugs

https://domesticanimalbreeds.com/american-fuzzy-lop-rabbit-everything-you-need-to-know/
http://lcamtuf.coredump.cx/afl/
https://embed.cs.utah.edu/csmith/

4317-214

Another alternative: Differential Testing

BubbleSort
1.0.0

Input

Output

RadixSort
1.0.0

Use an existing, functionally-equivalent implementation as a reference.
(E.g., a correct implementation with undesirable non-functional properties.)

4417-214

Another alternative: Differential Testing

RadixSort
1.0.3

Input

Output

RadixSort
1.0.4

Alternatively, we can use an older, correct implementation.

4517-214

No reference implementation? Property-based testing

Unit testing generally relies on checking concrete input-output
examples. Property-based testing checks that certain properties
hold true for all possible inputs.

• Attempts to generates inputs that violate properties.
• Easier to specify than expected outputs!
• What properties should I check?

@RunWith(JUnitQuickcheck.class)
public class StringProperties {
 @Property public void concatenationLength(String s1, String s2) {
 assertEquals(s1.length() + s2.length(), (s1 + s2).length());
 }
}

https://github.com/pholser/junit-quickcheck

https://github.com/pholser/junit-quickcheck

4617-214

EvoSuite: Automated Test Generation for Java

http://www.evosuite.org/evosuite/

● Generates minimal,
coverage-maximizing test suites.

● Uses dynamic specification inference
to suggest assertions that can be
used by those tests.

http://www.evosuite.org/evosuite/

4717-214

Summary

• Automated test generation is not a panacea.
– Can be difficult to reach “interesting” program states
– Requires an oracle
– Cheap to automatically generate tests, but expensive to maintain.

• But it is a useful technique!
– Complements developer-written tests
– Can be better at identifying certain bug classes

4817-214

Outline

• Class invariants

• Immutability

• Testing and coverage

• Testing for complex environments

4917-214

Problems when testing some apps

• User-facing applications
– Users click, drag, etc., and interpret output

– Timing issues

• Testing against big infrastructure
– Databases, web services, etc.

• Real world effects
– Printing, mailing documents, sensor noise, etc.

• Collectively comprise the test environment

5017-214

Example – Tiramisu app

• Mobile route planning app

• Android user interface

• Backend uses live PAT data

5117-214

Another example

• 3rd party Facebook apps

• Android user interface

• Backend uses Facebook data

5217-214

Testing in real environments

Code Facebook
Android
client

void buttonClicked() {
 render(getFriends());
}

List<Friend> getFriends() {
 Connection c = http.getConnection();
 FacebookApi api = new FacebookApi(c);
 List<Node> persons = api.getFriends("john");
 for (Node person1 : persons) {
 for (Node person2 : persons) {
 …
 }
 }
 return result;
}

5317-214

Eliminating Android dependency?

Code Facebook
Test
driver

@Test void testGetFriends() {
 ... // A Junit test
}

List<Friend> getFriends() {
 Connection c = http.getConnection();
 FacebookApi api = new FacebookApi(c);
 List<Node> persons = api.getFriends("john");
 for (Node person1 : persons) {
 for (Node person2 : persons) {
 …
 }
 }
 return result;
}

5417-214

That won’t quite work

• GUI applications process many thousands of events

• Solution: automated GUI testing frameworks
– Allow streams of GUI events to be captured, replayed

• These tools are sometimes called robots

5517-214

The more general case: Record and replay

https://github.com/SeleniumHQ/selenium
https://netflix.github.io/pollyjs/#/
https://wiki.ros.org/rosbag

https://github.com/SeleniumHQ/selenium
https://netflix.github.io/pollyjs/#/
https://wiki.ros.org/rosbag

5617-214

Eliminating Facebook dependency?

Code Mock
Facebook

@Test void testGetFriends() {
 ... // A Junit test
}

List<Friend> getFriends() {
 FacebookApi api = new MockFacebook(c);
 List<Node> persons = api.getFriends("john");
 for (Node person1 : persons) {
 for (Node person2 : persons) {
 …
 }
 }
 return result;
}

Test
driver

5717-214

That won’t quite work!

• Changing production code for testing unacceptable

• Problem caused by constructor in code

• Instead of constructor, use special factory that allows alternative
implementations

• Use tools to facilitate this sort of testing
– Dependency injection tools, e.g., Dagger, Guice, Spring

– Mock object frameworks such as Mockito

5817-214

Fault injection

• Mocks can emulate failures such as timeouts

• Allows you to verify the robustness of system against faults that
you can’t generate at will

Code Mock
Facebook

Test
driver

https://github.com/mrwilson/byte-monkey
https://blog.probablyfine.co.uk/2016/05/30/announcing-byte-monkey.html

https://github.com/mrwilson/byte-monkey
https://blog.probablyfine.co.uk/2016/05/30/announcing-byte-monkey.html

5917-214

Advantages of using mocks

• Test code locally without large environment

• Enable deterministic tests (in some cases)

• Enable fault injection

• Can speed up test execution
– e.g., avoid slow database access

• Can simulate functionality not yet implemented

• Enable test automation

6017-214

Design Implications

• Think about testability when writing code

• When a mock may be appropriate, design for it

• Hide subsystems behind an interfaces

• Use factories, not constructors to instantiate

• Use appropriate tools
– Dependency injection or mocking frameworks

6117-214

Hardware differences matter...

https://engineering.fb.com/android/the-mobile-device-lab-at-the-prineville-data-center/
https://medium.com/netflix-techblog/automated-testing-on-devices-fc5a39f47e24
https://ai.google/research/teams/brain/robotics/

https://engineering.fb.com/android/the-mobile-device-lab-at-the-prineville-data-center/
https://medium.com/netflix-techblog/automated-testing-on-devices-fc5a39f47e24
https://ai.google/research/teams/brain/robotics/

6217-214

More Testing in 15-313
Foundations of Software Engineering

• Manual testing

• Security testing, penetration testing

• Fuzz testing for reliability

• Usability testing

• GUI/Web testing

• Regression testing

• Property-based testing

• Differential testing

• Stress/soak testing

6317-214

Conclusion

• To maintain class invariants
– Minimize mutability

– Make defensive copies where required

• Interface testing is critical
– Design interfaces to facilitate testing

– Write creative test suites that maximize power-to-weight ratio

– Coverage tools can help gauge test suite quality

• Testing apps with complex environments requires added effort

