
1 17-214

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	2:	Design	case	studies	
	
Introduction	to	concurrency	and	GUIs	
	
Charlie	Garrod									Chris	Timperley	

2 17-214

Administrivia	

•  Reading	due	Tuesday:		UML	and	Patterns	26.1	and	26.4	
•  Homework	4a	due	tonight	

–  Homework	4a	feedback	coming	next	week	

•  Homework	4b	due	October	17th	

https://commons.wikimedia.org/wiki/File:1_carcassonne_aerial_2016.jpg	

3 17-214

Key	concepts	from	Tuesday	

•  Class	invariants	must	be	maintained	
–  Make	defensive	copies	where	required	

•  Immutable	classes	have	many	advantages	
•  Testing	is	critical	to	software	quality	

–  Good	tests	have	high	power-to-weight	ratio	

4 17-214

Key	concepts	from	yesterday's	recitation	

•  Discovering	design	patterns	
•  Observer	design	pattern	

5 17-214

Observer	pattern	(a.k.a.	publish/subscribe)	

•  Problem:		Must	notify	other	objects	(observers)	without	
becoming	dependent	on	the	objects	receiving	the	notification	

•  Solution:		Define	a	small	interface	to	define	how	observers	
receive	a	notification,	and	only	depend	on	the	interface	

•  Consequences:	
–  Loose	coupling	between	observers	and	the	source	of	the	notifications	
–  Notifications	can	cause	a	cascade	effect	

See edu.cmu.cs.cs214.rec06.alarmclock.AlarmListener…

6 17-214

Today	

•  The	observer	pattern	
•  Introduction	to	concurrency	
•  Introduction	to	GUIs	

7 17-214

A	thread	is	a	thread	of	execution	

•  Multiple	threads	in	the	same	program	concurrently	
•  Threads	share	the	same	memory	address	space	

8 17-214

Threads	vs.	processes	

•  Threads	are	lightweight;	processes	are	heavyweight	
•  Threads	share	address	space;	processes	don't	
•  Threads	require	synchronization;	processes	don't	
•  It's	unsafe	to	kill	threads;	safe	to	kill	processes	

9 17-214

Reasons	to	use	threads	

•  Performance	needed	for	blocking	activities	
•  Performance	on	multi-core	processors	
•  Natural	concurrency	in	the	real-world	
•  Existing	multi-threaded,	managed	run-time	environments	

10 17-214

A	simple	threads	example	

public	interface	Runnable	{		//	java.lang.Runnable	
				public	void	run();	
}	
	
public	static	void	main(String[]	args)	{	
				int	n	=	Integer.parseInt(args[0]);		//	Number	of	threads;	
	
				Runnable	greeter	=	new	Runnable()	{	
								public	void	run()	{	
												System.out.println("Hi	mom!");	
								}	
				};	
				for	(int	i	=	0;	i	<	n;	i++)	{	
								new	Thread(greeter).start();	
				}	
}	

11 17-214

A	simple	threads	example	

public	interface	Runnable	{		//	java.lang.Runnable	
				public	void	run();	
}	
	
public	static	void	main(String[]	args)	{	
				int	n	=	Integer.parseInt(args[0]);		//	Number	of	threads;	
	
				Runnable	greeter	=	()	->	System.out.println("Hi	mom!");	
				for	(int	i	=	0;	i	<	n;	i++)	{	
								new	Thread(greeter).start();	
				}	
}	

12 17-214

A	simple	threads	example	

public	interface	Runnable	{		//	java.lang.Runnable	
				public	void	run();	
}	
	
public	static	void	main(String[]	args)	{	
				int	n	=	Integer.parseInt(args[0]);		//	Number	of	threads;	
	
				for	(int	i	=	0;	i	<	n;	i++)	{	
								new	Thread(()	->	System.out.println("Hi	mom!")).start();	
				}	
}	

13 17-214

Aside:		Anonymous	inner	class	scope	in	Java	

public	interface	Runnable	{		//	java.lang.Runnable	
				public	void	run();	
}	
	
public	static	void	main(String[]	args)	{	
				int	n	=	Integer.parseInt(args[0]);		//	Number	of	threads;	
	
				for	(int	i	=	0;	i	<	n;	i++)	{	
								new	Thread(()	->	System.out.println("T"	+	i)).start();	
				}	
}	

won't compile
because i mutates

14 17-214

Aside:		Anonymous	inner	class	scope	in	Java	

public	interface	Runnable	{		//	java.lang.Runnable	
				public	void	run();	
}	
	
public	static	void	main(String[]	args)	{	
				int	n	=	Integer.parseInt(args[0]);		//	Number	of	threads;	
	
				for	(int	i	=	0;	i	<	n;	i++)	{	
								int	j	=	i;		//	j	unchanging	within	each	loop	
								new	Thread(()	->	System.out.println("T"	+	j)).start();	
				}	
}	

j is effectively final

15 17-214

Aside?:		Design	with	inner	class	scope	in	Java	

16 17-214

Threads	for	performance	

•  Naïve	multi-threading	on	a	simple	parallel	computation	

Number	of	threads	 Seconds	to	run	
1	 22.0	

2	 13.5	

3	 11.7	

4	 10.8	

17 17-214

Shared	mutable	state	requires	synchronization	

•  Three	basic	choices:	
1.  Don't	mutate:		share	only	immutable	state	
2.  Don't	share:		isolate	mutable	state	in	individual	threads	
3.  If	you	must	share	mutable	state:		synchronize	properly	

18 17-214

The	challenge	of	synchronization	

•  Not	enough	synchronization:		safety	failure	
–  Incorrect	computation	

•  Too	much	synchronization:		liveness	failure	
–  Possibly:	No	computation	at	all	

19 17-214

Today	

•  The	observer	pattern	
•  Introduction	to	concurrency	
•  Introduction	to	GUIs	

20 17-214

Event-based	programming	

•  Style	of	programming	where	control-flow	is	driven	by	(usually	
external)	events	

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(42)
}

public void performAction(ActionEvent e) {
 bigBloatedPowerPointFunction(e);
 withANameSoLongIMadeItTwoMethods(e);
 yesIKnowJavaDoesntWorkLikeThat(e);
}

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(40)
}

21 17-214

Examples	of	events	in	GUIs	

•  User	clicks	a	button,	presses	a	key	
•  User	selects	an	item	from	a	list,	an	item	from	a	menu	
•  Mouse	hovers	over	a	widget,	focus	changes	
•  Scrolling,	mouse	wheel	turned	
•  Resizing	a	window,	hiding	a	window	
•  Drag	and	drop	

•  A	packet	arrives	from	a	web	service,	connection	drops,	…	
•  System	shutdown,	…	

22 17-214

Blocking	interaction	with	command-line	interfaces	

Scanner	input	=	new	Scanner(System.in);	
while	(questions.hasNext())	{	

	Question	q	=	question.next();	
	System.out.println(q.toString());	
	String	answer	=	input.nextLine();	
	q.respond(answer);	

}	

23 17-214

Blocking	interactions	with	users	

Game PlayerDealer

newGame

addCards

addCards

getAction

action

[action==hit]	addCard

blocking
execution

24 17-214

Interactions	with	users	through	events	

•  Do	not	block	waiting	for	user	response	
•  Instead,	react	to	user	events	

	

Game PlayerDealer

newGame

addCards

addCards

hit

addCard

25 17-214

An	event-based	GUI	with	a	GUI	framework	

•  Setup	phase	
–  Describe	how	the	GUI	window	should	look	
–  Register	observers	to	handle	events	

•  Execution	
–  Framework	gets	events	from	OS,	processes	events	

•  Your	code	is	mostly	just	event	handlers	

GUI	
Framework	

OS	

Application	

get
event

drawing
commands

next
event

event—
mouse, key,
redraw, …

See edu.cmu.cs.cs214.rec06.alarmclock.AlarmWindow…

26 17-214

GUI	frameworks	in	Java	

•  AWT	–	obsolete	except	as	a	part	of	Swing	
•  Swing	–	widely	used	
•  SWT	–	Little	used	outside	of	Eclipse	
•  JavaFX	–	Billed	as	a	replacement	for	Swing	

–  Released	2008	–	never	gained	traction	
•  A	bunch	of	modern	(web	&	mobile)	frameworks	

–  e.g.,	Android	

27 17-214

GUI	programming	is	inherently	multi-threaded	

•  Swing	Event	dispatch	thread	(EDT)	handles	all	GUI	events	
–  Mouse	events,	keyboard	events,	timer	events,	etc.	

•  No	other	time-consuming	activity	allowed	on	the	EDT	
–  Violating	this	rule	can	cause	liveness	failures	

28 17-214

Ensuring	all	GUI	activity	is	on	the	EDT	

•  Never	make	a	Swing	call	from	any	other	thread	
–  "Swing	calls"	include	Swing	constructors	

•  If	not	on	EDT,	make	Swing	calls	with	invokeLater:	
	
public	static	void	main(String[]	args)	{	
			SwingUtilities.invokeLater(()	->	new	Test().setVisible(true));	
}	

29 17-214

Callbacks	execute	on	the	EDT	

•  You	are	a	guest	on	the	Event	Dispatch	Thread!	
–  Don’t	abuse	the	privilege	

•  If	>	a	few	ms	of	work	to	do,	do	it	off	the	EDT	
–  javax.swing.SwingWorker	designed	for	this	purpose	

30 17-214

Components	of	a	Swing	application	

JButton

JPanel

JTextField

…

JFrame

31 17-214

Swing	has	many	widgets	

•  JLabel	
•  JButton	
•  JCheckBox	
•  JChoice	
•  JRadioButton	

•  JTextField	
•  JTextArea	
•  JList	
•  JScrollBar	
•  …	and	more	

•  JFrame	is	the	Swing	Window	

•  JPanel	(a.k.a.	a	pane)	is	the	container	to	which	you	add	your	components	
(or	other	containers)	

32 17-214

To	create	a	simple	Swing	application	

•  Make	a	window	(a	JFrame)	
•  Make	a	container	(a	JPanel)	

–  Put	it	in	the	window	
•  Add	components	(buttons,	boxes,	etc.)	to	the	container	

–  Use	layouts	to	control	positioning	
–  Set	up	observers	(a.k.a.	listeners)	to	respond	to	events	
–  Optionally,	write	custom	widgets	with	application-specific	display	logic	

•  Set	up	the	window	to	display	the	container	

•  Then	wait	for	events	to	arrive…	

33 17-214

E.g.,	creating	a	button	

//static	public	void	main…	
JFrame	window	=	…	
	
JPanel	panel	=	new	JPanel();	
window.setContentPane(panel);	
	
JButton	button	=	new	JButton(“Click	me”);	
button.addActionListener(new	ActionListener()	{	

	public	void	actionPerformed(ActionEvent	e)	{	
	 	System.out.println(“Button	clicked”);	
	}	

});	
panel.add(button);	
	
window.setVisible(true);	

panel to hold
the button

34 17-214

E.g.,	creating	a	button	

//static	public	void	main…	
JFrame	window	=	…	
	
JPanel	panel	=	new	JPanel();	
window.setContentPane(panel);	
	
JButton	button	=	new	JButton(“Click	me”);	
button.addActionListener((e)	->	{	

	 	System.out.println(“Button	clicked");	
});	
panel.add(button);	
	
window.setVisible(true);	

panel to hold
the button

35 17-214

The	javax.swing.ActionListener	

•  Listeners	are	objects	with	callback	functions	
–  Can	be	registered	to	handle	events	on	widgets	
–  All	registered	widgets	are	called	if	event	occurs	

interface	ActionListener	{	
	void	actionPerformed(ActionEvent	e);	

}	
class	ActionEvent	{	

	int	when;	
	String	actionCommand;	
	int	modifiers;	
	Object	source();	
	int	id;	
	…	

}	

36 17-214

Button	design	discussion	

•  Button	implementation	should	be	reusable	but	customizable	
–  Different	button	label,	different	event-handling	

•  Must	decouple	button's	action	from	the	button	itself	
•  Listeners	are	separate	independent	objects	

–  A	single	button	can	have	multiple	listeners	
–  Multiple	buttons	can	share	the	same	listener	

37 17-214

Swing	has	many	event	listener	interfaces	

•  ActionListener	
•  AdjustmentListener	
•  FocusListener	
•  ItemListener	
•  KeyListener	

•  MouseListener	
•  TreeExpansionListener	
•  TextListener	
•  WindowListener	
•  …	

class	ActionEvent	{	
	int	when;	
	String	actionCommand;	
	int	modifiers;	
	Object	source();	
	int	id;	
	…	

}	interface	ActionListener	{	
	void	actionPerformed(ActionEvent	e);	

}	

38 17-214

Design	discussion:		Decoupling	your	game	from	your	GUI	

39 17-214

Summary	

•  Use	the	observer	pattern	to	decouple	two-way	dependences	
•  Multi-threaded	programming	is	genuinely	hard	

–  Neither	under-	nor	over-synchronize	
–  Immutable	types	are	your	friend	

•  GUI	programming	is	inherently	multi-threaded	
–  Swing	calls	must	be	made	on	the	event	dispatch	thread	
–  No	other	significant	work	should	be	done	on	the	EDT	

40 17-214

Paper	slides	from	lecture	are	scanned	below..	

	11-introduction-to-concurrency-and-guis
	observer-game-paper-slides

