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Administrivia

• Homework 4c due next Thursday
• Reading assignment due next Tuesday

– Effective Java, Items 6, 7, and 63
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Review: libraries, frameworks both define APIs

Library

Framework

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup 
internals, without rendering
}

/ render component on first view and 
resizing
protected void 
paintComponent(Graphics g) {
// draw a red box on his 
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(), 
d.getHeight());}
}

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup 
internals, without rendering
}

/ render component on first view and 
resizing
protected void 
paintComponent(Graphics g) {
// draw a red box on his 
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(), 
d.getHeight());}
}

your code

your code

API

API
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The next two lectures: API design

• An API design process

• The key design principle: information hiding

• Concrete advice for user-centered design

Based heavily on "How to Design a Good API and Why it Matters" by Josh Bloch.
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“Time for Change” (2002)

If you pay $2.00 for a gasket that costs
$1.10, how much change do you get?

public class Change {
    public static void main(String args[]) {
        System.out.println(2.00 - 1.10);
    }
}
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What does it print?

(a) 0.9
(b) 0.90
(c) It varies
(d) None of the above

public class Change {
    public static void main(String args[]) {
        System.out.println(2.00 - 1.10);
    }
}
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(a) 0.9

(b) 0.90

(c) It varies

(d) None of the above: 0.8999999999999999

Decimal values can't be represented exactly
by float or double

What does it print?
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Another look

public class Change {
    public static void main(String args[]) {
        System.out.println(2.00 - 1.10);
    }
}
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How do you fix it?

// You could fix it this way...
import java.math.BigDecimal;
public class Change {

    public static void main(String args[]) {

        System.out.println(

            new BigDecimal("2.00").subtract(

                new BigDecimal("1.10")));

    }

}

// ...or you could fix it this way
public class Change {
    public static void main(String args[]) {
        System.out.println(200 - 110);
    }
}

Prints 0.90

Prints 90
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The moral

• Avoid float and double where exact answers are required
– For example, when dealing with money

• Use BigDecimal or long instead
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2. “A Change is Gonna Come”

If you pay $2.00 for a gasket that costs
$1.10, how much change do you get?

import java.math.BigDecimal;

public class Change {
    public static void main(String args[]) {
        BigDecimal payment = new BigDecimal(2.00);
        BigDecimal cost = new BigDecimal(1.10);
        System.out.println(payment.subtract(cost));
    }
}
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What does it print?

import java.math.BigDecimal;

public class Change {
    public static void main(String args[]) {
        BigDecimal payment = new BigDecimal(2.00);
        BigDecimal cost = new BigDecimal(1.10);
        System.out.println(payment.subtract(cost));
    }
}

(a) 0.9
(b) 0.90
(c) 0.8999999999999999
(d) None of the above
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(a) 0.9

(b) 0.90

(c) 0.8999999999999999

(d) None of the above:

0.8999999999999999111821580299874767
66109466552734375

We used the wrong BigDecimal constructor

What does it print?
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What’s going on here?

import java.math.BigDecimal;

public class Change {
    public static void main(String args[]) {
        BigDecimal payment = new BigDecimal(2.00);
        BigDecimal cost = new BigDecimal(1.10);
        System.out.println(payment.subtract(cost));
    }
}

The spec says:
   public BigDecimal(double val)

Translates a double into a BigDecimal which is the exact 
decimal representation of the double's binary floating-point 
value. 
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How do you fix it?

import java.math.BigDecimal;

public class Change {
    public static void main(String args[]) {
        BigDecimal payment = new BigDecimal("2.00");
        BigDecimal cost = new BigDecimal("1.10");
        System.out.println(payment.subtract(cost));
    }
}

Prints 0.90
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The moral

• Use new BigDecimal(String),
not new BigDecimal(double)

• BigDecimal.valueOf(double) is better, but not perfect
– Use it for non-constant values.
– Uses canonical string representation to construct decimal

• For API designers
– Make it easy to do the commonly correct thing
– Make it hard to misuse
– Make it possible to do exotic things
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Fundamental Design Principle for Change:

Information Hiding

• Expose as few implementation detail as necessary

• Allows implementation to be changed at a later date

Service* 
implementation

Service* interface

Client
environment

 Hidden from 
service* provider

 Hidden from 
service* client

* service = object, 
subsystem, …
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Why create a public API?
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Good APIs can be a great asset!

• Distributed development among many teams
– Incremental, non-linear software development

– Facilitates communication

• Long-term buy-in from clients & customers
– Users invest heavily: acquiring, writing, learning

– Cost to stop using an API can be prohibitive

– Successful public APIs capture users
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Poor APIs can be a great liability!

• Lost productivity from your software developers

• Wasted customer support resources

• Lack of buy-in from clients & customers

http://www.throughlinegroup.com/wp-content/uploads/2013/10/Paper-Buried-By.jpg
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Public APIs are forever

Your code

Your colleague

Another 
colleague

...
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Public APIs are forever

Eclipse
(IBM)

JDT Plugin 
(IBM)

CDT Plugin 
(IBM)

...
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Hyrum’s Law
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Today’s topic: API Design
Review: what is an API?

• Short for Application Programming Interface

• Component specification in terms of operations, inputs, & 
outputs

– Defines a set of functionalities independent of 
implementation

• Allows implementation to vary without compromising clients

• Defines component boundaries in a programmatic system

• A public API is one designed for use by others
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Exponential growth in the power of APIs

’50s-’60s – Arithmetic. Entire library was 10-20 calls!

’70s – malloc, bsearch, qsort, rnd, I/O, system calls, formatting, 

early databases

’80s – GUIs, desktop publishing, relational databases

’90s – Networking, multithreading, 3D graphics

’00s – Data structures(!), higher-level abstractions, Web APIs: social 

media, cloud infrastructure 

’10s – Machine learning, IOT, robotics, pretty much everything

This list is approximate and incomplete, but it tells a story
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What the dramatic growth in APIs has done for us

• Enabled code reuse on a grand scale

• Increased the level of abstraction dramatically

• A single programmer can quickly do things that would have 
taken months for a team

• What was previously impossible is now routine

• APIs have given us super-powers
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Why is API design important?

• A good API is a joy to use; a bad API is a nightmare

• APIs can be among your greatest assets
– Users invest heavily: acquiring, writing, learning

– Cost to stop using an API can be prohibitive

– Successful public APIs capture users

• APIs can also be among your greatest liabilities
– Bad API can cause unending stream of support calls

– Can inhibit ability to move forward

• Public APIs are forever – one chance to get it right
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Why is API design important to you?

• If you program, you are an API designer
– Good code is modular – each module has an API

• Useful modules tend to get reused
– Good reusable modules are an asset

– Once module has users, can’t change API at will 

• Thinking in terms of APIs improves code quality
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Characteristics of a good API

• Easy to learn

• Easy to use, even without documentation

• Hard to misuse

• Easy to read and maintain code that uses it

• Sufficiently powerful to satisfy requirements

• Easy to evolve

• Appropriate to audience
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Outline

• The Process of API Design

• Naming

• Documentation
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Gather requirements–skeptically

• Often you’ll get proposed solutions instead
– Better solutions may exist

• Your job is to extract true requirements 
– Should take the form of use-cases

• Can be easier & more rewarding to build more general API

What they say: “We need new data structures and RPCs 
with the Version 2 attributes”

What they mean: “We need a new data format that 
accommodates evolution of attributes”
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An often overlooked part of requirements gathering

• Ask yourself if the API should be designed

• Here are several good reasons not to design it
– It’s superfluous

– It’s impossible

– It’s unethical

– The requirements are too vague

• If any of these things are true, now is the time to raise red flag

• If the problem can’t be fixed, fail fast!
– The longer you wait, the more costly the failure
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Start with short spec – 1 page is ideal

• At this stage, agility trumps completeness

• Bounce spec off as many people as possible
– Listen to their input and take it seriously

• If you keep the spec short, it’s easy to modify

• Flesh it out as you gain confidence
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Sample early API draft

// A collection of elements (root of the collection hierarchy)
public interface Collection<E> {

    // Ensures that collection contains o
    boolean add(E o);

    // Removes an instance of o from collection, if present
    boolean remove(Object o);

    // Returns true iff collection contains o
    boolean contains(Object o) ;

    // Returns number of elements in collection
    int size() ;

    // Returns true if collection is empty
    boolean isEmpty();

    ...  // Remainder omitted
}
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Write to your API early and often

• Start before you’ve implemented the API
– Saves you doing implementation you'll throw away

• Start before you’ve even specified it properly
– Saves you from writing specs you'll throw away

• Continue writing to API as you flesh it out
– Prevents nasty surprises right before you ship

• Code lives on as examples, unit tests
– Among the most important code you’ll ever write
– Forms the basis of Design Fragments

[Fairbanks, Garlan, & Scherlis, OOPSLA ‘06, P. 75]
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Try API on at least 3 use cases before release

• If you write one, it probably won’t support another

• If you write two, it will support more with difficulty

• If you write three, it will probably work fine

• Ideally, get different people to write the use cases

– This will test documentation & give you different perspectives

• This is even more important for plug-in APIs

• Will Tracz calls this “The Rule of Threes”
(Confessions of a Used Program Salesman, Addison-Wesley, 1995)
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Maintain realistic expectations

• Most API designs are over-constrained
– You won't be able to please everyone – don’t try!

– Come up with a unified, coherent design that represents a compromise

– It can be hard to decide which “requirements” are important

• Expect to make mistakes
– Real-world use will flush them out

– Expect to evolve API
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Issue tracking

• Throughout process, maintain a list of design issues
– Individual decisions such as what input format to accept

• Write down all the options

• Say which were ruled out and why

• When you decide, say which was chosen and why

• Prevents wasting time on solved issues

• Provides rationale for the resulting API
– Reminds its creators

– Enlightens its users
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Key design artifacts

1. Requirements document

2. Issues list

3. Use-case code

Maintain throughout design and retain when done
– They guide the design process

– When API is done, they’re the basis of the design rationale

• Public explanation for design

• For an example, see 
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/designfaq.html 

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/designfaq.html
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Disclaimer – one size does not fit all

• This process has worked for me

• Others developed similar processes independently

• But I’m sure there are other ways to do it

• The smaller the API, the less process you need
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Puzzler: “Big Trouble”

public static void main(String [] args) {
   BigInteger fiveThousand = new BigInteger("5000");
   BigInteger fiftyThousand = new BigInteger("50000");
   BigInteger fiveHundredThousand = new BigInteger("500000");

   BigInteger total = BigInteger.ZERO;
   total.add(fiveThousand);
   total.add(fiftyThousand);
   total.add(fiveHundredThousand);

   System.out.println(total);
}
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What Does It Print?

public static void main(String [] args) {
   BigInteger fiveThousand = new BigInteger("5000");
   BigInteger fiftyThousand = new BigInteger("50000");
   BigInteger fiveHundredThousand = new BigInteger("500000");

   BigInteger total = BigInteger.ZERO;
   total.add(fiveThousand);
   total.add(fiftyThousand);
   total.add(fiveHundredThousand);

   System.out.println(total);
}

(a) 0
(b) 500000
(c) 555000
(d) Other
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(a) 0

(b) 500000

(c) 555000

(d) It varies

BigInteger is immutable!

What Does It Print?
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Another Look

public static void main(String [] args) {
   BigInteger fiveThousand = new BigInteger("5000");
   BigInteger fiftyThousand = new BigInteger("50000");
   BigInteger fiveHundredThousand = new BigInteger("500000");

   BigInteger total = BigInteger.ZERO;
   total.add(fiveThousand);         // Ignores result
   total.add(fiftyThousand);        // Ignores result
   total.add(fiveHundredThousand);  // Ignores result

   System.out.println(total);
}
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How do you fix it?

public static void main(String [] args) {
   BigInteger fiveThousand = new BigInteger("5000");
   BigInteger fiftyThousand = new BigInteger("50000");
   BigInteger fiveHundredThousand = new BigInteger("500000");

   BigInteger total = BigInteger.ZERO;
   total = total.add(fiveThousand);
   total = total.add(fiftyThousand);
   total = total.add(fiveHundredThousand);

   System.out.println(total);
} Prints 555000



4617-214

The moral

• Names like add, subtract, negate suggest mutation

• Better names: plus, minus, negation

• Generally (and loosely) speaking:
– Action verbs for mutation

– Prepositions, linking verbs, nouns, or adjectives for pure functions

• Names are important!
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Outline

• The Process of API Design

• Naming

• Documentation

https://hilton.org.uk/presentations/naming
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Names Matter – API is a little language

• Primary goals
– Client code should read like prose (“easy to read”)

– Client code should mean what it says (“hard to misread”)

– Client code should flow naturally (“easy to write”)

• To that end, names should:
– be largely self-explanatory

– leverage existing knowledge

– interact harmoniously with language and each other

Naming is perhaps the single most important factor in API usability
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The easy part: typographical naming conventions

• Package or module – org.junit.jupiter.api, 
com.google.common.collect

• Class or Interface – Stream, FutureTask, LinkedHashMap, 
HttpClient

• Method or Field – remove, groupingBy, getCrc

• Parameter – numerator, modulus

• Constant Field – MIN_VALUE, NEGATIVE_INFINITY

• Type Parameter – T, E, K, V, X, R, U, V, T1, T2

The language specification demands that you follow these
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How to choose names that are easy to read & write

• Choose key nouns carefully!
– Related to finding good abstractions, which can be hard

– If you can’t find a good name, it’s generally a bad sign

• If you get the key nouns right, other nouns, verbs, and 
prepositions tend to choose themselves

• Names can be literal or metaphorical
– Literal names have literal associations

• e.g., Matrix → inverse, determinant, eigenvalue, etc.

– Metaphorical names enable reasoning by analogy

• e.g., Publication, Subscriber → publish, subscribe,
cancel, issue, issueNumber, circulation, etc.
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Another way names drive development

• Names may remind you of another API

• Consider copying its vocabulary and structure

• People who know other API will have an easy time learning 
yours

• You may be able to develop it more quickly

• You may be able to use types from the other API

• You may even be able to share implementation
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Names drive development, for better or worse

• Good names drive good development

• Bad names inhibit good development

• Bad names result in bad APIs unless you take action

• The API talks back to you. Listen!
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Vocabulary consistency

• Use words consistently throughout your API
– Never use the same word for multiple meanings

– Never use multiple words for the same meaning

– i.e., words should be isomorphic to meanings
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Vocabulary consistency as it relates to scope

• The tighter the scope, the more important is consistency
– Within APIs, consistency is critical

– In related APIs on a platform, it’s highly desirable

– Across the platform, it’s desirable

– Between platforms, it’s nice-to-have

• If forced to choose between local & platform consistency, choose 
local

• But look to platform libraries for vocabulary
– Ignoring obsolete and unpopular libraries

• Finally, look to similar APIs on other platforms for naming ideas

APIs are actually little language extensions
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Avoid abbreviations except where customary

• Back in the day, storage was scarce & people abbreviated 
everything
– Some continue to do this by force of habit or tradition

• Ideally, use complete words

• But sometimes, names just get too long
– If you must abbreviate, do it tastefully

– No excuse for cryptic abbreviations

• Of course you should use gcd, Url, cos, mba, etc.
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Grammar is a part of naming too

• Nouns for classes 
– BigInteger, PriorityQueue

• Nouns or adjectives for interfaces
– Collection, Comparable

• Nouns, linking verbs or prepositions for non-mutative methods
– size, isEmpty, plus

• Action verbs for mutative methods
– put, add, clear

• If you follow these, they quickly become second nature
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Names should be regular – strive for symmetry

• If API has 2 verbs and 2 nouns, support all 4 combinations
– Unless you have a very good reason not to

• Programmers will try to use all 4 combinations
– They will get upset if the one they want is missing

• In other words, good APIs are generally orthogonal
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Don’t mislead your user

• Names have implications
– Learn them and uphold them in your APIs

• Don’t violate the principle of least astonishment

• Ignore this advice at your own peril
– Can cause unending stream of subtle bugs

public static boolean interrupted()

Tests whether the current thread has been interrupted. The 
interrupted status of the thread is cleared by this method....
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Don’t lie to your user

• Name method for what it does, not what you wish it did

• If you can’t bring yourself to do this, fix the method!

• Again, ignore this at your own peril

public long skip(long n) throws IOException

Skips over and discards n bytes of data from this input stream. The 
skip method may, for a variety of reasons, end up skipping over some 
smaller number of bytes, possibly 0. This may result from any of a 
number of conditions; reaching end of file before n bytes have been 
skipped is only one possibility. The actual number of bytes skipped is 
returned…



6217-214

Good naming takes time, but it’s worth it

• Don’t be afraid to spend hours on it; I do.
– And I still get the names wrong sometimes

• Discuss names with colleagues; it really helps.
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Adopt better naming practices

• Start with meaning and intention. 

• Use words with precise meanings. 

• Prefer fewer words in names. 

• No abbreviations in names (except id) 

• Use code review to improve names. 

• Read the code out loud to check that it sounds okay. 

• Actually rename things. 
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Lecture summary

• APIs took off in the past thirty years and gave us super-powers

• Good APIs are a blessing; bad ones, a curse

• Following an API design process greatly improves API quality

• Naming is critical to API usability


