
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

API Design, Part I: Process and Naming

Charlie Garrod Chris Timperley

217-214

Administrivia

• Homework 4c due next Thursday
• Reading assignment due next Tuesday

– Effective Java, Items 6, 7, and 63

317-214

Review: libraries, frameworks both define APIs

Library

Framework

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight());}
}

public MyWidget extends JContainer {

ublic MyWidget(int param) {/ setup
internals, without rendering
}

/ render component on first view and
resizing
protected void
paintComponent(Graphics g) {
// draw a red box on his
componentDimension d = getSize();
g.setColor(Color.red);
g.drawRect(0, 0, d.getWidth(),
d.getHeight());}
}

your code

your code

API

API

417-214

The next two lectures: API design

• An API design process

• The key design principle: information hiding

• Concrete advice for user-centered design

Based heavily on "How to Design a Good API and Why it Matters" by Josh Bloch.

517-214

“Time for Change” (2002)

If you pay $2.00 for a gasket that costs
$1.10, how much change do you get?

public class Change {
 public static void main(String args[]) {
 System.out.println(2.00 - 1.10);
 }
}

617-214

What does it print?

(a) 0.9
(b) 0.90
(c) It varies
(d) None of the above

public class Change {
 public static void main(String args[]) {
 System.out.println(2.00 - 1.10);
 }
}

717-214

(a) 0.9

(b) 0.90

(c) It varies

(d) None of the above: 0.8999999999999999

Decimal values can't be represented exactly
by float or double

What does it print?

817-214

Another look

public class Change {
 public static void main(String args[]) {
 System.out.println(2.00 - 1.10);
 }
}

917-214

How do you fix it?

// You could fix it this way...
import java.math.BigDecimal;
public class Change {

 public static void main(String args[]) {

 System.out.println(

 new BigDecimal("2.00").subtract(

 new BigDecimal("1.10")));

 }

}

// ...or you could fix it this way
public class Change {
 public static void main(String args[]) {
 System.out.println(200 - 110);
 }
}

Prints 0.90

Prints 90

1017-214

The moral

• Avoid float and double where exact answers are required
– For example, when dealing with money

• Use BigDecimal or long instead

1117-214

2. “A Change is Gonna Come”

If you pay $2.00 for a gasket that costs
$1.10, how much change do you get?

import java.math.BigDecimal;

public class Change {
 public static void main(String args[]) {
 BigDecimal payment = new BigDecimal(2.00);
 BigDecimal cost = new BigDecimal(1.10);
 System.out.println(payment.subtract(cost));
 }
}

1217-214

What does it print?

import java.math.BigDecimal;

public class Change {
 public static void main(String args[]) {
 BigDecimal payment = new BigDecimal(2.00);
 BigDecimal cost = new BigDecimal(1.10);
 System.out.println(payment.subtract(cost));
 }
}

(a) 0.9
(b) 0.90
(c) 0.8999999999999999
(d) None of the above

1317-214

(a) 0.9

(b) 0.90

(c) 0.8999999999999999

(d) None of the above:

0.8999999999999999111821580299874767
66109466552734375

We used the wrong BigDecimal constructor

What does it print?

1417-214

What’s going on here?

import java.math.BigDecimal;

public class Change {
 public static void main(String args[]) {
 BigDecimal payment = new BigDecimal(2.00);
 BigDecimal cost = new BigDecimal(1.10);
 System.out.println(payment.subtract(cost));
 }
}

The spec says:
 public BigDecimal(double val)

Translates a double into a BigDecimal which is the exact
decimal representation of the double's binary floating-point
value.

1517-214

How do you fix it?

import java.math.BigDecimal;

public class Change {
 public static void main(String args[]) {
 BigDecimal payment = new BigDecimal("2.00");
 BigDecimal cost = new BigDecimal("1.10");
 System.out.println(payment.subtract(cost));
 }
}

Prints 0.90

1617-214

The moral

• Use new BigDecimal(String),
not new BigDecimal(double)

• BigDecimal.valueOf(double) is better, but not perfect
– Use it for non-constant values.
– Uses canonical string representation to construct decimal

• For API designers
– Make it easy to do the commonly correct thing
– Make it hard to misuse
– Make it possible to do exotic things

1717-214

Fundamental Design Principle for Change:

Information Hiding

• Expose as few implementation detail as necessary

• Allows implementation to be changed at a later date

Service*
implementation

Service* interface

Client
environment

 Hidden from
service* provider

 Hidden from
service* client

* service = object,
subsystem, …

1817-214

Why create a public API?

1917-214

Good APIs can be a great asset!

• Distributed development among many teams
– Incremental, non-linear software development

– Facilitates communication

• Long-term buy-in from clients & customers
– Users invest heavily: acquiring, writing, learning

– Cost to stop using an API can be prohibitive

– Successful public APIs capture users

2017-214

Poor APIs can be a great liability!

• Lost productivity from your software developers

• Wasted customer support resources

• Lack of buy-in from clients & customers

http://www.throughlinegroup.com/wp-content/uploads/2013/10/Paper-Buried-By.jpg

2117-214

Public APIs are forever

Your code

Your colleague

Another
colleague

...

2217-214

Public APIs are forever

Eclipse
(IBM)

JDT Plugin
(IBM)

CDT Plugin
(IBM)

...

2317-214

Hyrum’s Law

2417-214

Today’s topic: API Design
Review: what is an API?

• Short for Application Programming Interface

• Component specification in terms of operations, inputs, &
outputs

– Defines a set of functionalities independent of
implementation

• Allows implementation to vary without compromising clients

• Defines component boundaries in a programmatic system

• A public API is one designed for use by others

2517-214

Exponential growth in the power of APIs

’50s-’60s – Arithmetic. Entire library was 10-20 calls!

’70s – malloc, bsearch, qsort, rnd, I/O, system calls, formatting,

early databases

’80s – GUIs, desktop publishing, relational databases

’90s – Networking, multithreading, 3D graphics

’00s – Data structures(!), higher-level abstractions, Web APIs: social

media, cloud infrastructure

’10s – Machine learning, IOT, robotics, pretty much everything

This list is approximate and incomplete, but it tells a story

2617-214

What the dramatic growth in APIs has done for us

• Enabled code reuse on a grand scale

• Increased the level of abstraction dramatically

• A single programmer can quickly do things that would have
taken months for a team

• What was previously impossible is now routine

• APIs have given us super-powers

2717-214

Why is API design important?

• A good API is a joy to use; a bad API is a nightmare

• APIs can be among your greatest assets
– Users invest heavily: acquiring, writing, learning

– Cost to stop using an API can be prohibitive

– Successful public APIs capture users

• APIs can also be among your greatest liabilities
– Bad API can cause unending stream of support calls

– Can inhibit ability to move forward

• Public APIs are forever – one chance to get it right

2817-214

Why is API design important to you?

• If you program, you are an API designer
– Good code is modular – each module has an API

• Useful modules tend to get reused
– Good reusable modules are an asset

– Once module has users, can’t change API at will

• Thinking in terms of APIs improves code quality

2917-214

Characteristics of a good API

• Easy to learn

• Easy to use, even without documentation

• Hard to misuse

• Easy to read and maintain code that uses it

• Sufficiently powerful to satisfy requirements

• Easy to evolve

• Appropriate to audience

3017-214

Outline

• The Process of API Design

• Naming

• Documentation

3117-214

Gather requirements–skeptically

• Often you’ll get proposed solutions instead
– Better solutions may exist

• Your job is to extract true requirements
– Should take the form of use-cases

• Can be easier & more rewarding to build more general API

What they say: “We need new data structures and RPCs
with the Version 2 attributes”

What they mean: “We need a new data format that
accommodates evolution of attributes”

3217-214

An often overlooked part of requirements gathering

• Ask yourself if the API should be designed

• Here are several good reasons not to design it
– It’s superfluous

– It’s impossible

– It’s unethical

– The requirements are too vague

• If any of these things are true, now is the time to raise red flag

• If the problem can’t be fixed, fail fast!
– The longer you wait, the more costly the failure

3317-214

Start with short spec – 1 page is ideal

• At this stage, agility trumps completeness

• Bounce spec off as many people as possible
– Listen to their input and take it seriously

• If you keep the spec short, it’s easy to modify

• Flesh it out as you gain confidence

3417-214

Sample early API draft

// A collection of elements (root of the collection hierarchy)
public interface Collection<E> {

 // Ensures that collection contains o
 boolean add(E o);

 // Removes an instance of o from collection, if present
 boolean remove(Object o);

 // Returns true iff collection contains o
 boolean contains(Object o) ;

 // Returns number of elements in collection
 int size() ;

 // Returns true if collection is empty
 boolean isEmpty();

 ... // Remainder omitted
}

3517-214

Write to your API early and often

• Start before you’ve implemented the API
– Saves you doing implementation you'll throw away

• Start before you’ve even specified it properly
– Saves you from writing specs you'll throw away

• Continue writing to API as you flesh it out
– Prevents nasty surprises right before you ship

• Code lives on as examples, unit tests
– Among the most important code you’ll ever write
– Forms the basis of Design Fragments

[Fairbanks, Garlan, & Scherlis, OOPSLA ‘06, P. 75]

3617-214

Try API on at least 3 use cases before release

• If you write one, it probably won’t support another

• If you write two, it will support more with difficulty

• If you write three, it will probably work fine

• Ideally, get different people to write the use cases

– This will test documentation & give you different perspectives

• This is even more important for plug-in APIs

• Will Tracz calls this “The Rule of Threes”
(Confessions of a Used Program Salesman, Addison-Wesley, 1995)

3717-214

Maintain realistic expectations

• Most API designs are over-constrained
– You won't be able to please everyone – don’t try!

– Come up with a unified, coherent design that represents a compromise

– It can be hard to decide which “requirements” are important

• Expect to make mistakes
– Real-world use will flush them out

– Expect to evolve API

3817-214

Issue tracking

• Throughout process, maintain a list of design issues
– Individual decisions such as what input format to accept

• Write down all the options

• Say which were ruled out and why

• When you decide, say which was chosen and why

• Prevents wasting time on solved issues

• Provides rationale for the resulting API
– Reminds its creators

– Enlightens its users

3917-214

Key design artifacts

1. Requirements document

2. Issues list

3. Use-case code

Maintain throughout design and retain when done
– They guide the design process

– When API is done, they’re the basis of the design rationale

• Public explanation for design

• For an example, see
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/designfaq.html

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/designfaq.html

4017-214

Disclaimer – one size does not fit all

• This process has worked for me

• Others developed similar processes independently

• But I’m sure there are other ways to do it

• The smaller the API, the less process you need

4117-214

Puzzler: “Big Trouble”

public static void main(String [] args) {
 BigInteger fiveThousand = new BigInteger("5000");
 BigInteger fiftyThousand = new BigInteger("50000");
 BigInteger fiveHundredThousand = new BigInteger("500000");

 BigInteger total = BigInteger.ZERO;
 total.add(fiveThousand);
 total.add(fiftyThousand);
 total.add(fiveHundredThousand);

 System.out.println(total);
}

4217-214

What Does It Print?

public static void main(String [] args) {
 BigInteger fiveThousand = new BigInteger("5000");
 BigInteger fiftyThousand = new BigInteger("50000");
 BigInteger fiveHundredThousand = new BigInteger("500000");

 BigInteger total = BigInteger.ZERO;
 total.add(fiveThousand);
 total.add(fiftyThousand);
 total.add(fiveHundredThousand);

 System.out.println(total);
}

(a) 0
(b) 500000
(c) 555000
(d) Other

4317-214

(a) 0

(b) 500000

(c) 555000

(d) It varies

BigInteger is immutable!

What Does It Print?

4417-214

Another Look

public static void main(String [] args) {
 BigInteger fiveThousand = new BigInteger("5000");
 BigInteger fiftyThousand = new BigInteger("50000");
 BigInteger fiveHundredThousand = new BigInteger("500000");

 BigInteger total = BigInteger.ZERO;
 total.add(fiveThousand); // Ignores result
 total.add(fiftyThousand); // Ignores result
 total.add(fiveHundredThousand); // Ignores result

 System.out.println(total);
}

4517-214

How do you fix it?

public static void main(String [] args) {
 BigInteger fiveThousand = new BigInteger("5000");
 BigInteger fiftyThousand = new BigInteger("50000");
 BigInteger fiveHundredThousand = new BigInteger("500000");

 BigInteger total = BigInteger.ZERO;
 total = total.add(fiveThousand);
 total = total.add(fiftyThousand);
 total = total.add(fiveHundredThousand);

 System.out.println(total);
} Prints 555000

4617-214

The moral

• Names like add, subtract, negate suggest mutation

• Better names: plus, minus, negation

• Generally (and loosely) speaking:
– Action verbs for mutation

– Prepositions, linking verbs, nouns, or adjectives for pure functions

• Names are important!

4717-214

Outline

• The Process of API Design

• Naming

• Documentation

https://hilton.org.uk/presentations/naming

4817-214

Names Matter – API is a little language

• Primary goals
– Client code should read like prose (“easy to read”)

– Client code should mean what it says (“hard to misread”)

– Client code should flow naturally (“easy to write”)

• To that end, names should:
– be largely self-explanatory

– leverage existing knowledge

– interact harmoniously with language and each other

Naming is perhaps the single most important factor in API usability

4917-214

5017-214

5117-214

The easy part: typographical naming conventions

• Package or module – org.junit.jupiter.api,
com.google.common.collect

• Class or Interface – Stream, FutureTask, LinkedHashMap,
HttpClient

• Method or Field – remove, groupingBy, getCrc

• Parameter – numerator, modulus

• Constant Field – MIN_VALUE, NEGATIVE_INFINITY

• Type Parameter – T, E, K, V, X, R, U, V, T1, T2

The language specification demands that you follow these

5217-214

How to choose names that are easy to read & write

• Choose key nouns carefully!
– Related to finding good abstractions, which can be hard

– If you can’t find a good name, it’s generally a bad sign

• If you get the key nouns right, other nouns, verbs, and
prepositions tend to choose themselves

• Names can be literal or metaphorical
– Literal names have literal associations

• e.g., Matrix → inverse, determinant, eigenvalue, etc.

– Metaphorical names enable reasoning by analogy

• e.g., Publication, Subscriber → publish, subscribe,
cancel, issue, issueNumber, circulation, etc.

5317-214

Another way names drive development

• Names may remind you of another API

• Consider copying its vocabulary and structure

• People who know other API will have an easy time learning
yours

• You may be able to develop it more quickly

• You may be able to use types from the other API

• You may even be able to share implementation

5417-214

Names drive development, for better or worse

• Good names drive good development

• Bad names inhibit good development

• Bad names result in bad APIs unless you take action

• The API talks back to you. Listen!

5517-214

Vocabulary consistency

• Use words consistently throughout your API
– Never use the same word for multiple meanings

– Never use multiple words for the same meaning

– i.e., words should be isomorphic to meanings

5617-214

Vocabulary consistency as it relates to scope

• The tighter the scope, the more important is consistency
– Within APIs, consistency is critical

– In related APIs on a platform, it’s highly desirable

– Across the platform, it’s desirable

– Between platforms, it’s nice-to-have

• If forced to choose between local & platform consistency, choose
local

• But look to platform libraries for vocabulary
– Ignoring obsolete and unpopular libraries

• Finally, look to similar APIs on other platforms for naming ideas

APIs are actually little language extensions

5717-214

Avoid abbreviations except where customary

• Back in the day, storage was scarce & people abbreviated
everything
– Some continue to do this by force of habit or tradition

• Ideally, use complete words

• But sometimes, names just get too long
– If you must abbreviate, do it tastefully

– No excuse for cryptic abbreviations

• Of course you should use gcd, Url, cos, mba, etc.

5817-214

Grammar is a part of naming too

• Nouns for classes
– BigInteger, PriorityQueue

• Nouns or adjectives for interfaces
– Collection, Comparable

• Nouns, linking verbs or prepositions for non-mutative methods
– size, isEmpty, plus

• Action verbs for mutative methods
– put, add, clear

• If you follow these, they quickly become second nature

5917-214

Names should be regular – strive for symmetry

• If API has 2 verbs and 2 nouns, support all 4 combinations
– Unless you have a very good reason not to

• Programmers will try to use all 4 combinations
– They will get upset if the one they want is missing

• In other words, good APIs are generally orthogonal

6017-214

Don’t mislead your user

• Names have implications
– Learn them and uphold them in your APIs

• Don’t violate the principle of least astonishment

• Ignore this advice at your own peril
– Can cause unending stream of subtle bugs

public static boolean interrupted()

Tests whether the current thread has been interrupted. The
interrupted status of the thread is cleared by this method....

6117-214

Don’t lie to your user

• Name method for what it does, not what you wish it did

• If you can’t bring yourself to do this, fix the method!

• Again, ignore this at your own peril

public long skip(long n) throws IOException

Skips over and discards n bytes of data from this input stream. The
skip method may, for a variety of reasons, end up skipping over some
smaller number of bytes, possibly 0. This may result from any of a
number of conditions; reaching end of file before n bytes have been
skipped is only one possibility. The actual number of bytes skipped is
returned…

6217-214

Good naming takes time, but it’s worth it

• Don’t be afraid to spend hours on it; I do.
– And I still get the names wrong sometimes

• Discuss names with colleagues; it really helps.

6317-214

Adopt better naming practices

• Start with meaning and intention.

• Use words with precise meanings.

• Prefer fewer words in names.

• No abbreviations in names (except id)

• Use code review to improve names.

• Read the code out loud to check that it sounds okay.

• Actually rename things.

6417-214

Lecture summary

• APIs took off in the past thirty years and gave us super-powers

• Good APIs are a blessing; bad ones, a curse

• Following an API design process greatly improves API quality

• Naming is critical to API usability

