Principles of Software Construction:
Objects, Design, and Concurrency

APl Design, Part Il: Principles

Charlie Garrod Chris Timperley

Carnegie Mellon University
School of Computer Science
. . .
institute for
I S SOFTWARE
RESEARCH
SSSSSSSS

17-480/780 [

Administrivia

e Homework 4c due on Thursday
— Up to 75% of points lost on Homework 4a can be recovered
by submitting revised design documents.

* Homework 5 coming soon!
— Team sign-up sheet will be posted to Piazza later this week.

 Midterm exam in class next Thursday (31st October)
— Review session details will be posted soon.

17-480/780 2 e

RESEARCH

Key concepts from Thursday...

* APIs took off in the past thirty years, and gave
programmers super-powers

* Good APIs are a blessing; bad ones, a curse
* Using a design process greatly improves APl quality

17-480/780 3 serrin

Characteristics of a Good API

Review

17-480/780 4 SR

RESEARCH

Characteristics of a Good API

Review
e Easy tolearn

* Easy to use, even if you take away the documentation
* Hard to misuse

e Easy to read and maintain code that uses it

e Sufficiently powerful to satisfy requirements

e Easy to evolve

* Appropriate to audience

= institute for
17-480/780 S e

Key concepts from Thursday...

* Naming is critical to APl usability

How to name things:

the hardest problem in programming

@PeterHilton

http://hilton.org.uk/

17-480/780 o [H s

Tips for better names

Review

17-480/780 7 SR

RESEARCH

Tips for better names

Review

Start with meaning and intention

Avoid ambiguous terms with multiple meanings
Avoid terms with the same meaning -- use one term
— remove and delete

Prefer shorter names

Avoid acronyms and abbreviations

Read the code to make sure that it sounds okay

Ask for feedback on your names!

https://www.youtube.com/watch?v=SctS56YQ6fg

17-480/780

8

institute for
SOFTWARE
RESEARCH

https://www.youtube.com/watch?v=SctS56YQ6fg

Outline

* General principles (8)
* Class design (5)
 Method design (9)

e Exception design (4)
* Documentation

17-480/780 o [ot

1. APl Should Do One Thing and Do it Well

* Functionality should be easy to explain
— If it's hard to name, that's generally a bad sign
— Be amenable to splitting and merging modules

Good: Font, Set, PrivateKey, Lock,
ThreadFactory, TimeUnit, Future<T>

Bad: DynAnyFactoryOperations,
_BindingIteratorImplBase,
ENCODING CDR _ENCAPS, OMGVMCID

790/640Wx560H/SAK_1_4713__S1.jpg

ttps://assets.victorinox.com/mediahub/33
o
institute f
17-480/780 10 SorA
RESEARCH

What not to do

public abstract class Calendar implements
Serializable, Cloneable, Comparable<Calendar>

The Calendar class is an abstract class that provides
methods for converting between a specific instant in time
and a set of calendar fields such

as YEAR, MONTH, DAY _OF MONTH, HOUR, and so on,
and for manipulating the calendar fields, such as getting
the date of the next week. An instant in time can be
represented by a millisecond value that is an offset from
the Epoch, January 1, 1970 00:00:00.000 GMT
(Gregorian).

17-480/780 11 R

What not to do, continued

Like other locale-sensitive classes, Calendar provides a class

method, getinstance, for getting a generally useful object of this

type. Calendar's getinstance method returns a Calendar object whose calendar
fields have been initialized with the current date and time:

Calendar rightNow = Calendar.getInstance();

A Calendar object can produce all the calendar field values needed to implement
the date-time formatting for a particular language and calendar style (for
example, Japanese-Gregorian, Japanese-Traditional). Calendar defines the range
of values returned by certain calendar fields, as well as their meaning. For
example, the first month of the calendar system has value MONTH ==

JANUARY for all calendars. Other values are defined by the concrete subclass,
such as ERA. See individual field documentation and subclass documentation for
details.

etc., etc., etc., etc., etc., etc., etc., etc.

17-480/780 12 e

RESEARCH

What is a Calendar instance? What does it do?

| have no clue!!!

* The confusion, bugs, and pain caused by this class are
incalculable

* Thankfully it’s obsolete as of Java 8; use java.time
* Inexplicably, it’s not deprecated, even as of Java 10

* If you working on an API and you see a class description
that looks like this, run screaming!

= institute for
17-480/780 13 e

2. APl should be as small as possible but no smaller

“Everything should be made as simple as possible, but not simpler.” — Einstein

* APl must satisfy its requirements
— Beyond that, more is not necessarily better
— But smaller APIs sometimes solve more problems!
— Generalizing an APl can make it smaller

e When in doubt, leave it out
— Functionality, classes, methods, parameters, etc.
— You can always add, but you can never remove

17-480/780 14 SR

RESEARCH

Conceptual weight (a.k.a. conceptual surface area)

* Conceptual weight more important than “physical size”
* The number and difficulty of new concepts in API
 Examples where growth add little conceptual weight:

— Adding overload that behaves consistently with existing methods
— Adding new static methods to a utility class
— Adding arccos when you already have sin, cos, and arcsin
* Look for a high power-to-weight ratio
— In other words, look for API that lets you do a lot with a little

17-480/780 15 e

RESEARCH

Example: generalizing an APl can make it smaller
Subrange operations on Vector - legacy List implementation

public class Vector {
public int indexOf(Object elem, int index);
public int lastIndexOf(Object elem, int index);

* Not very powerful
— Supports only search operation, and only over certain ranges
* Hard to use without documentation

— What are the semantics of index?
— |l don’t remember, and it isn’t obvious.

17-480/780 16 SR

RESEARCH

Example: generalizing an APl can make it smaller
Subrange operations on List

public interface List<T> {
List<T> sublList(int fromIndex, int toIndex);

}
* Extremely powerful!

— Supports all List operations on all subranges
— Returned list is a view of receiver, not a copy
e Easy to use even without documentation

17-480/780 17 SR

RESEARCH

3. Don’t make users do anything library could do for them

APIs should exist to serve their users and not vice-versa

 Reduce need for boilerplate code
— Generally done via cut-and-paste
— Ugly, annoying, and error-prone

import org.w3c.dom.*;

import java.io.*;

import javax.xml.transform.*;

import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;

// DOM code to write an XML document to a specified output stream.
static final void writeDoc(Document doc, OutputStream out) throws IOException {
try {
Transformer t = TransformerFactory.newInstance().newTransformer();
t.setOutputProperty(OutputKeys.DOCTYPE _SYSTEM,
doc.getDoctype().getSystemId());
t.transform(new DOMSource(doc), new StreamResult(out));
} catch(TransformerException e) {
throw new AssertionError(e); // Can’t happen!

}

. . .
institute for

17-480/780 18 N

4. Make it easy to do what’s common and
preferable, possible to do what’s less-common

* People tend to take the easy way out
— Make sure it’s what they want and should do

* If it’s hard to do what they want, they’ll get upset
— They’ll have to go to the documentation

e |f it’s easier to do something wrong, dangerous, or
expensive, that’s exactly what users will do

* Don’t worry too much about truly rare stuff
— It’s OK if your APl doesn’t handle it, at least

0
in the first release m

NEW YORK TIMES Besvaeller

RICHARD H. THALER
»4CASS R. SUNSTEIN

17-480/780 19 e

RESEARCH

5. Monitor complexity constantly

* Train yourself to run “complexity meter” in the background
 When it starts climbing, look for ways to simplify

Complexity

17-480/780 20 SR

RESEARCH

6. Implementation should not impact API

* Natural human tendency to design what you know how
to implement — fight it!
— Design for the user; then figure out how to implement

* Implementation constraints may change; APl won’t
— When this happens, APl becomes unexplainable

* When platform and domain are at odds, choose domain
— e.g., chess algebraic notation vs. zero-based indexing

17-480/780 21 e

RESEARCH

7. APlIs should coexist peacefully with platform

* Do what is customary
— Obey standard naming conventions
— Avoid obsolete parameter and return types
— Mimic patterns in core APIs and language

* Take advantage of API-friendly features

— varargs, enums, iterables, try-with-resources,
default methods, etc.

 Don’t Transliterate APIs
— Common in the early days (Corba, JGL, etc.)
— Still happens

17-480/780 22 e

RESEARCH

8. Consider the performance consequences of API
design decisions

“Programmers waste enormous amounts of time thinking
about, or worrying about, the speed of noncritical parts of
their programs, and these attempts at efficiency actually
have a strong negative impact when debugging and
maintenance are considered. We should forget about
small efficiencies, say about 97% of the time:

premature optimization is the root of all evil. Yet we
should not pass up our opportunities in that critical 3%.”

Donald Knuth

17-480/780 23 SR

RESEARCH

8. Consider the performance consequences of API
design decisions

 Bad API decisions can limit performance forever
— Making type inappropriately mutable (or immutable!)
— Providing public constructor instead of static factory
— Using implementation type instead of interface

 But do not warp API to gain performance

— Underlying performance issue will get fixed,
but headaches will be with you forever

— Good design usually coincides with good performance

17-480/780 24 e

RESEARCH

8. Consider the performance consequences of API
design decisions

* Component.getSize() returns Dimension
e Dimension is mutable

* Each getSize call must allocate Dimension
e Causes millions of needless object allocations!

17-480/780

getSize

public Dimension getSize()

Returns the size of this component in the form of a Dimension object. The height field of the Dimension object contains this component's height, and
the width field of the Dimension object contains this component's width.

Returns:
a Dimension object that indicates the size of this component

Since:

See Also:

o
institute for
25 I S SOFTWARE
RESEARCH

Outline

* General principles (8)
* Class design (5)
 Method design (9)

e Exception design (4)
* Documentation

17-480/780 26 [ik

1. Don’t expose a new type that lacks meaningful
contractual refinements on an existing supertype

e Just use the existing type

* Reduces conceptual surface area

* Increases flexibility

* Resist the urge to expose type just because it’s there

17-480/780 27 EEOFET,X%{AR:

2. Minimize Mutability

e Parameters should be immutable
— Eliminates need for defensive copying

* Classes should be immutable unless there’s a good
reason to do otherwise

— Advantages: simple, thread-safe, reusable
— Disadvantage: separate object for each value

* If mutable, keep state-space small, well-defined
— Make clear when it’s legal to call which method
Bad: Date, Calendar, Thread.interrupt

Good: BigInteger, Pattern, Matcher

17-480/780 28 SR

RESEARCH

3. Minimize accessibility of everything

* Make classes, members as private as possible

— If it’s at least package-private, it’s not a part of the API
* Public classes should have no public fields

(with the exception of constants)
* Maximizes information hiding [Parnas72]
* Minimizes coupling

— Allows components to be, understood, used, built, tested,
debugged, and optimized independently

17-480/780 29 e

RESEARCH

4. Subclass only when an is-a relationship exists

e Subclassing implies substitutability (Liskov)

— Makes it possible to pass an instance of subclass wherever
superclass is called for

— And signals user that it’s OK to do this
* If not is-a but you subclass anyway, all hell breaks loose

— Bad: java.util.Properties, java.util.Stack
* Never subclass just to reuse implementation

e Ask yourself “Is every Foo really a Bar?”
— If you can’t answer yes with a straight face, don’t subclass!

17-480/780 30 SR

RESEARCH

4. Subclass only when an is-a relationship exists

* Ask yourself “Is every Foo really a Bar?”
— If you can’t answer yes with a straight face, don’t subclass!

LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

https://miro.medium.com/proxy/0*r3w5f6R_xSk-f4PH.png

17-480/780 31 SR

RESEARCH

5. Design & document for inheritance or else prohibit it

* Inheritance violates encapsulation (Snyder, '86)
— Subclasses are sensitive to implementation details of superclass

* |f you allow subclassing, document self-use
— How do methods use one another?

e Conservative policy: all concrete classes uninheritable
See Effective Java ltem 19 for details

Bad: Many concrete classes in J2SE libraries
Good: AbstractSet, AbstractMap

17-480/780 32 SR

RESEARCH

Outline

* The Process of API Design
* General Principles (8)

* Class Design (5)
 Method Design (9)

* Exception Design (4)

17-480/780 1 [ok

1. “Fail Fast” — prevent failure, or fail quickly,
predictably, and informatively

* APl should make it impossible to do what’s wrong

— Fail at compile time or sooner

* Misuse that’s statically detectable is second best

— Fail at build time, with proper tooling

* Misuse leading to prompt runtime failure is third
best

— Fail when first erroneous call is made
— Method should be failure-atomic

17-480/780 34 e

RESEARCH

Misuse that’s statically detectable (and fails
promptly at runtime if it eludes static analysis)

// The WRONG way to require one or more arguments!
static int min(int... args) {
if (args.length == 0)
throw new IllegalArgumentException("Need at least 1 arg");
int min = args[@];
for (int 1 = 1; 1 < args.length; i++)
if (args[i] < min)
min = args[i];
return min;

17-480/780 35 SR

RESEARCH

APl that makes it impossible to do what’s wrong

// The right way to require one or more arguments
static int min(int firstArg, int... remainingArgs) {
int min = firstArg;
for (int arg : remainingArgs)
if (arg < min)
min = arg;
return min;

Won’t compile if you try to invoke with no arguments
No validity check necessary

Works great with for-each loop

17-480/780 36 sErin

1. “Fail Fast” — prevent failure, or fail quickly,
predictably, and informatively

* Misuse that can lie undetected is nightmarish!
— Fail at an undetermined place and time in the future

https://pbs.twimg.com/profile_images/632821853627678720/zPKK7jql_400x400.png

17-480/780 37 e

RESEARCH

API that fails at an unknown time and place (***)

Sweet dreams...

// A Properties instance maps strings to strings
public class Properties extends Hashtable {

public Object put(Object key, Object value);

// Throws ClassCastException if this properties
// contains any keys or values that are not strings
public void save(OutputStream out, String comments);

17-480/780 38 SR

RESEARCH

2. Handle boundary conditions (edge cases,
corner cases) gracefully

 Client should not have to write extra code
— These cases should just work

e e.g., Return zero-length arrays, collections; not null

package java.awt.image;

public interface BufferedImageOp {
// Returns the rendering hints for this operation,
// or null if no hints have been set.
public RenderingHints getRenderingHints () ;

}

* If client must treat boundary cases differently, use
Optional<T>, checked exception, or some such

17-480/780 39 e

RESEARCH

3. Use appropriate parameter and return types

* Favor interface types over classes for input
— Provides flexibility, performance

* Use most specific reasonable input parameter type
— Moves error from runtime to compile time

* Don't use String if a better type exists
— Strings are cumbersome, error-prone, and slow
* Don't use floating point for monetary values
— Binary floating point causes inexact results!

 Use double (64 bits) rather than float (32 bits)

— Unless you know (via benchmarking) that you need the
performance, and you can tolerate the low precision

17-480/780 40 e

RESEARCH

4. Use consistent parameter ordering across methods

e Especially important if parameter types identical

#include <string.h>
char *strncpy(char *dst, char *src, size t n);
void bcopy (void *src, void *dst, size t n);

* Also important if parameter types “overlap,” e.g., (int,
long) can hurt you if you pass two int values

java.util.collections —first parameter always
collection to be modified or queried

java.util.concurrent —time always specified as
long delay, TimeUnit unit

17-480/780 a1 SR

RESEARCH

5. Avoid long parameter lists

* Three or fewer parameters is ideal
— More and users will have to refer to docs

* Long lists of identically typed params are very harmful

— Programmers transpose parameters by mistake
— Programs still compile, run, but misbehave!

* Techniques for shortening parameter lists
— Break up method
— Create helper class to hold several parameters
» Often they’re otherwise useful, e.g., Duration
— Use builder pattern
// Eleven (!) parameters including four consecutive ints
HWND CreateWindow(LPCTSTR lpClassName, LPCTSTR lpWindowName,
DWORD dwStyle, int x, int y, int nWidth, int nHeight,

HWND hWndParent, HMENU hMenu, HINSTANCE hInstance,
LPVOID lpParam);

17-480/780 42

institute for
SOFTWARE
RESEARCH

6. Avoid return values that demand exceptional processing

* Return zero-length array or empty collection, not null

package java.awt.image;

public interface BufferedImageOp {
// Returns the rendering hints for this operation,
// or null if no hints have been set.
public RenderingHints getRenderingHints();

¥

17-480/780 43 SR

RESEARCH

7. Do not overspecify the behavior of methods

 Don’t specify internal details
— It’s not always obvious what’s an internal detail

* All tuning parameters are suspect
— Let client specify intended use, not internal detail
— Good: intended size; Bad: number of buckets in table
— Good: intended concurrency level; Bad: number of shards

* Do not let internal details “leak” into spec
— e.g., by propagating inappropriate exceptions
* Do not specify hash functions!
— You lose the flexibility to improve them

17-480/780 44 SR

RESEARCH

8. Provide programmatic access to all data
available in string form

* Otherwise, clients will be forced to parse strings
— Painful for clients
— Error prone
— Worst of all, it turns string format into de facto API

17-480/780 45 e

RESEARCH

8. Provide programmatic access to all data
available in string form

Java got this wrong for exception stack traces...

public class Throwable {
public void printStackTrace(PrintStream s);

public
}

StackTraceElement[] getStackTrace(); // Since 1.4

public final class StackTraceElement {

public
public
public
public
public

17-480/780

String getFileName();

int getLineNumber();
String getClassName();
String getMethodName();
boolean isNativeMethod();

institute for
46 I S SOFTWARE
RESEARCH

9. Overload with care

* Avoid ambiguous overloadings
— Multiple overloadings applicable to same actuals

* Just because you can doesn’t mean you should
— Often better to use a different name

— But overloadings that really do the same thing for different
types are a good thing; they reduce conceptual weight

 Especially true for primitive types and arrays in Java

* |f you must provide ambiguous overloadings, ensure same

behavior for same arguments

// Bad - ambiguous overloading with different behaviors
public TreeSet(Collection<E> c); // Ignores order
public TreeSet(SortedSet<E> s); // Respects order

17-480/780 47 SR

RESEARCH

Outline

* General principles

e Class design (8)
 Method design (5)

* Exception design (9)
 Documentation (4)

17-480/780 ST

1. Throw exceptions to indicate exceptional conditions

 Don’t force client to use exceptions for control flow

private byte[] a = new byte[CHUNK SIZE];

void processBuffer(ByteBuffer buf) {
try {
while (true) {
buf.get(a);
processBytes(a, CHUNK SIZE);
}

} catch (BufferUnderflowException e) {
int remaining = buf.remaining();
buf.get(a, 9, remaining);
processBytes(a, remaining);

}

}

* Conversely, don’t fail silently

void threadGroup.enumerate(Thread[] 1list);

17-480/780 49

institute for
SOFTWARE
RESEARCH

2. Favor unchecked exceptions

* Checked — client must take recovery action

* Unchecked — generally a programming error
* Overuse of checked exceptions causes boilerplate

try {
Foo f = (Foo) super.clone();

} catch (CloneNotSupportedException e) {

// This can't happen, since we’re Cloneable
throw new AssertionError();

17-480/780 50 SR

RESEARCH

3. Favor the reuse of existing exception types

e Especially I1legalArgumentException and
IllegalStateException

* Makes APIs easier to learn and use
* Extend existing exceptions if you need extra methods
— e.g., lllegalNameArgumentException, getName()

17-480/780 51 SOFTWARE

4. Include failure-capture information in exceptions

* e.g., IndexOutOfBoundsException should include
index and, ideally bound(s) of access
— In early releases, it didn’t; now it includes index
— Added to detail message for arrays ca. JDK 1.1

— public IndexOutOfBoundsException(int index)
added in Java 9(!)

e Eases diagnosis and repair or recovery
* For unchecked exceptions, message suffices
* For checked exceptions, provide accessors too

17-480/780 52 e

RESEARCH

Outline

* General principles
* Class design

* Method design

* Exception design
* Documentation

17-480/780 53 SR

RESEARCH

APl documentation is critical

Reuse is something that is far easier to say than to do.
Doing it requires both good design and very good
documentation. Even when we see good design, which is
still infrequently, we won't see the components reused

without good documentation.
— D. L. Parnas, 1994
In Brooks’s The Mythical Man Month,
Anniversary Edition

17-480/780 54 e

RESEARCH

Document religiously

 Document every class, interface, method, constructor,
parameter, and exception
— Class: what an instance represents

— Method: contract between method and its client
* Preconditions, postconditions, side-effects

— Parameter: indicate units, form, ownership
 Document thread safety
* |If class is mutable, document state space

* If APl spans packages, JavaDoc is not sufficient
— Remember the collections framework?

17-480/780 55 e

RESEARCH

APl Design Summary

 Agood APl is a blessing; a bad one a curse
* API Design is hard

— Accept the fact that we all make mistakes
— But do your best to avoid them

* This talk and the last covered some heuristics of the
craft
— Don't adhere to them slavishly, but...
— Don't violate them without good reason

17-480/780 56 e

RESEARCH

