
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Software Engineering for Teams

Charlie Garrod Chris Timperley

217-214

Administrivia

• Homework 4c due today
– Up to 75% of points lost on Homework 4a can be recovered

by submitting revised design documents

• Homework 5 coming soon
– Team signup sheet will be posted to Piazza today
– Team signup deadline is next Tuesday

• Midterm in class next Thursday
– Review session with Shruti and Alice

Next Wednesday, 6-8pm, Hamerschlag B131* (provisional)
There will be pizza! :-)

317-214

Part 1:
Design at a Class Level

Design for Change:
Information Hiding,

Contracts, Unit Testing,
Design Patterns

Design for Reuse:
Inheritance, Delegation,

Immutability, LSP,
Design Patterns

Part 2:
Designing (Sub)systems

Understanding the
Problem

Responsibility Assignment,
Design Patterns,

GUI vs Core,
Design Case Studies

Testing Subsystems

Design for Reuse at Scale:
Frameworks and APIs

Part 3:
Designing Concurrent

Systems

Concurrency Primitives,
Synchronization

Designing Abstractions for
Concurrency

Intro to Java

Git, CI
Static Analysis

GUIsUML More Git

GUIs
Performance

Design

417-214

Software engineering is inherently collaborative

517-214

https://blog.codinghorror.com/when-understanding-means-rewriting/

“Understanding code is by far the activity at which
professional developers spend most of their time.”
Peter Hallam, C# language design team

https://blog.codinghorror.com/when-understanding-means-rewriting/

617-214

Design as communication

APIs, code, and documentation are the language that we use to
communicate the intent of our software to other developers.

// A collection of elements (root of the collection hierarchy)

public interface Collection<E> {

 // Ensures that collection contains o

 boolean add(E o);

 // Removes an instance of o from collection, if present

 boolean remove(Object o);

 // Returns true iff collection contains o

 boolean contains(Object o) ;

 // Returns number of elements in collection

 int size() ;

 // Returns true if collection is empty

 boolean isEmpty();

 ... // Remainder omitted

}

https://www.uml-diagrams.org/examples/java-7-concurrent-executors-uml-class-diagram-example.png

717-214

When we get it right, code can read like poetry or a novel
you don’t want to put down. But when we get it wrong,
code can be □□□□□.

817-214

The group project will give you valuable experience of
tackling real-world design and engineering challenges

• You have to write code that is understandable
• You have to work with other people’s APIs and code
• You have to read and understand other people’s code

– It’s not enough for your code to produce the right result

• You will have to collectively make design decisions
• You will learn much more about good design

You will communicate within a team to develop plugins.
You will also communicate with other teams to use plugins.

Our goal is to transform you from a programmer to an engineer.

917-214

Outline

• Group dynamics
• Tools and processes for software teams

1017-214

Challenges of working as a team: Aligning expectations

• How do we make decisions?
– Are you a laissez-faire or by-the-book person?

• ...

1117-214

Challenges of working as a team: Aligning expectations

• How do we make decisions?
– Are you a laissez-faire or by-the-book person?

• How do we divide the work?
– Who should do what task?
– Should team members be responsible for certain components?
– How do we ensure a fair allocation of work?

• Does the group share the same goals and incentives?
– Bad things can happen when these are misaligned!

• What happens when work isn’t done?
– How will you make sure that the group stays on track?

• When do team members like to get work done?
– Are they night owls or early birds? (Be honest!)

• What other commitments do your team members have?
• Where will you get the work done?

– Will you work in the same location? Remotely? Asynchronously?

• ...

1217-214

Team roles: You will probably have more than one

• Facilitator: Moderates team discussion and keeps the group on task.
• Recorder: Takes notes summarizing team discussions and decisions,

and keeps all necessary records.
• Timekeeper: Keeps the group aware of time constraints and

deadlines and makes sure meetings start on time.
• Devil’s Advocate: Raises counter-arguments and (constructive)

objections; introduces alternative explanations and solutions.
• Innovator: Encourages imagination and contributes new and

alternative perspectives and ideas.
• Harmonizer: Strives to create a positive team atmosphere.
• Prioritizer: Makes sure group focuses on most important issues and

does not get caught up in unimportant details.

1317-214

Running an effective meeting: Before the meeting

• Prepare an agenda
– Beware of meetings without an agenda!

• Figure out a regular meeting slot
– If there is no agenda, cancel the meeting (longer notice is better)
– Make sure that your meeting has a clear cut-off time

• Determine a convenient place to meet
– Minimum distractions; laptop space; whiteboards

• Be organised and prepared

1417-214

Running an effective meeting: During the meeting

• At the start of the meeting, follow up on items from the
previous meeting and briefly review status.

• At the end of the meeting, summarise the decisions that were
made, the issues to be resolved, and the work to be done.
– Agree on what each team member needs to do by the next meeting.
– Set an agenda for the next meeting.

• Every meeting should produce an artifact.
– The recorder should maintain minutes of the meeting.
– A copy of the minutes should be sent to each team member.
– Consider using a shared Google Drive or similar.

1517-214

Aside: The importance of flow

https://images-na.ssl-images-amazon.com/images/I/61lAwzXfQiL._SX385_BO1,204,203,200_.jpg

“Unfortunately, you can’t turn on flow like a
switch. It takes a slow descent into the subject,
requiring 15 minutes or more of concentration
before the state is locked in. During this
immersion period, you are particularly sensitive
to noise and interruption. A disruptive
environment can make it difficult or impossible
to attain flow.”
— Peopleware, Third Edition, Chapter 10

1617-214

Outline

• Group dynamics
• Tools and processes for software teams

– Identifying and assigning tasks
– Collaborative development via GitHub
– Testing strategies

1717-214

Design the API

// A collection of elements (root of the collection hierarchy)

public interface Collection<E> {

 // Ensures that collection contains o

 boolean add(E o);

 // Removes an instance of o from collection, if present

 boolean remove(Object o);

 // Returns true iff collection contains o

 boolean contains(Object o) ;

 // Returns number of elements in collection

 int size() ;

 // Returns true if collection is empty

 boolean isEmpty();

 ... // Remainder omitted

}

Basic Process:
(1) Determine minimal feature set
(2) Draw UML on the whiteboard.
(3) Sketch out your API on paper
(4) Write example code
(5) Review
(6) Repeat

1817-214

Break up tasks into GitHub Issues

Issues can represent both tasks
and bugs that need to be fixed.

Issues should be:
● a reasonable chunk of work
● focused and cohesive

1917-214

Is an issue too big? Break it up!

2017-214

Break up tasks into GitHub Issues

2117-214

Use labels to indicate priority and differentiate bugs from features

2217-214

Consider using milestones (e.g., HW5a, HW5b)

2317-214

Now what?

2417-214

Assigning issues to team members

• How do we assign issues to team members?
– Split the issues equally?
– Are all issues equally important and time consuming?
– Should one person deal with all X-related matters?

• Unfair assignment can create resentment and bad dynamics.
– Most of the time this happens, it’s unintentional!
– Software engineers are really lousy at effort estimation.

https://jignashadesai.files.wordpress.com/2017/01/uneven.jpg

2517-214

Beware: Humans aren’t good at estimating effort!

Hofstadter's Law: It always takes longer than you expect, even
when you take into account Hofstadter's Law.
— Douglas Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid

The first 90 percent of the code accounts for the first 90 percent of
the development time. The remaining 10 percent of the code
accounts for the other 90 percent of the development time.
— Tom Cargill, Bell Labs

2617-214

Use planning poker to estimate effort

https://www.mountaingoatsoftware.com/agile/planning-poker

https://www.mountaingoatsoftware.com/agile/planning-poker

2717-214

When should we assign issues?

• No hard-and-fast rule.
• Self-assignment can be okay, and

may be necessary.
• Need to maintain checks and

balances! Review issue assignment
during meetings.

https://acumagnet.files.wordpress.com/2018/02/809316fe-2d30-4da7-92a1-18e6021efc03-4063-000003860964ea7d_tmp.jpg

2817-214

How does a large software project
get to be one year late?

One day at a time.
—  Fred Brooks,The Mythical Man-Month

https://en.wikipedia.org/wiki/The_Mythical_Man-Month

2917-214

Use a simple Kanban board to measure progress

3017-214

Outline

• Group dynamics
• Tools and processes for software teams

– Identifying and assigning tasks
– Collaborative development via GitHub
– Testing strategies

3117-214

Tackling the issues

3217-214

Single-branch development doesn’t scale to teams

Master

3317-214

Use simple branch-based development

Create a new branch for each feature.
● allows parallel development
● no dealing with half-finished code
● no merge conflicts!

Every commit to “master” should pass
your CI checks.

3417-214

Use GitHub pull requests to review and merge changes

https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request

3517-214

Aside: You can also create draft pull requests

https://github.blog/2019-02-14-introducing-draft-pull-requests/

Makes it easier for others to see progress without interrupting your workflow!

3617-214

You’ve created your Pull Request.
Now what?

3717-214

3817-214

Better: Ask your teammates to review your pull request!

https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-request-reviews

3917-214

Tips for Code Review: Preparing your code for review

1. Keep your changes small and cohesive
– Large pull requests (PRs) are tedious and difficult to review.
– Try to avoid fixing multiple issues in one PR.

2. Check your code before you submit your pull request
– Is the code readable? Do I need to add any comments?
– Is the Travis build passing? If not, fix it.
– Make life easier for the reviewer — things will move faster! :-)

3. Don’t get too attached to your code
– You may have to change things. Don’t take it personally.
– Be open to feedback — you’ll become a better engineer.

4017-214

Tips for Code Review: Reviewing code

1. Agree the purpose of review
– At a minimum, to see that the code is correct and tested.
– Check for style, consistency, naming, etc.

2. Be considerate
– Don’t review the author; review the code

3. Provide constructive criticism
– Identify the potential issues and provide suggestions
– If there’s any doubt, ask for clarification -- you may be wrong.
– Don’t pass off your own opinions as fact

4. Don’t change the pull request yourself
– At that point, you’re no longer a reviewer.

5. Establish timeliness expectations
– How long should the PR author wait to receive a review?

https://alterconf.com/talks/unlearning-toxic-behaviors-code-review-culture
https://css-tricks.com/code-review-etiquette/

4117-214

Bonus tip: Automatically close issues in commits/PRs

Use any of the following words:

● close #N, closes #N, closed #N
● fix #N, fixes #N, fixed #N
● resolve #N, resolves #N, resolved #N

4217-214

Outline

• Group dynamics
• Tools and processes for software teams

– Identifying and assigning tasks
– Collaborative development
– Testing strategies

4317-214

Devise a testing strategy for your team

• Who should write tests?
– The person responsible for the implementation?
– Someone else?

• When should tests be written? When will tests be written?
– Smaller issues = fewer tests
– Write blackbox tests before implementation
– Write additional whitebox tests before submitting a pull request

• Consider using mocks and (basic) dependency injection
– Allow coupled components to be unit tested
– Allows developers to work in parallel

https://site.mockito.org/

4417-214

Summary

• Identify and discuss risks within your team
– Get to know your teammates, and agree on your process

• Tools and services like Git, GitHub, and Trello can improve your
engineering process and help your team work more effectively!
– Some process is better than no process.
– Use this advice as a set of guidelines; discover what works well for your

team -- everyone is different.

• Check out the books below for much more on this topic!

