
1 17-214 

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	3:	Concurrency	
	
Introduction	to	concurrency	
	
Charlie	Garrod									Chris	Timperley	



2 17-214 

Administrivia	

•  Homework	5	team	sign-up	deadline	Thursday	
–  Team	sizes,	presentation	slots…	

•  Midterm	exam	in	class	Thursday	(31	October)	
–  Review	session	Wednesday,	30	October,	6-8	p.m.	in	HH	B131	

•  Next	required	reading	due	Tuesday	
–  Java	Concurrency	in	Practice,	Sections	11.3	and	11.4	

•  Homework	5	frameworks	discussion	



3 17-214 

Key	concepts	from	last	Thursday	



4 17-214 

Challenges	of	working	as	a	team:	Aligning	expectations	

•  How	do	we	make	decisions?	



5 17-214 

Use	simple	branch-based	development	

Create	a	new	branch	for	each	feature.	
●  allows	parallel	development	
●  no	dealing	with	half-finished	code	
●  no	merge	conflicts!	

Every	commit	to	“master”	should	pass	
your	CI	checks.	



6 17-214 

Semester	overview	

•  Introduction	to	Java	and	O-O	
•  Introduction	to	design	

–  Design	goals,	principles,	patterns	
•  Designing	classes	

–  Design	for	change	
–  Design	for	reuse	

•  Designing	(sub)systems	
–  Design	for	robustness	
–  Design	for	change	(cont.)	

•  Design	case	studies	
•  Design	for	large-scale	reuse	
•  Explicit	concurrency	

•  Crosscutting	topics:	
–  Modern	development	tools:	

IDEs,	version	control,	build	
automation,	continuous	
integration,	static	analysis	

–  Modeling	and	specification,	
formal	and	informal	

–  Functional	correctness:	Testing,	
static	analysis,	verification	



7 17-214 

Today:		Concurrency,	motivation	and	primitives	

•  The	backstory	
–  Motivation,	goals,	problems,	…	

•  Concurrency	primitives	in	Java	
•  Coming	soon	(not	today):	

–  Higher-level	abstractions	for	concurrency	
–  Program	structure	for	concurrency	
–  Frameworks	for	concurrent	computation	



8 17-214 

Power	requirements	of	a	CPU	

•  Approx.:		Capacitance	*	Voltage2	*	Frequency	
•  To	increase	performance:	

–  More	transistors,	thinner	wires	
•  More	power	leakage:		increase	V	

–  Increase	clock	frequency	F	
•  Change	electrical	state	faster:		increase	V	

•  Dennard	scaling:		As	transistors	get	smaller,	power	density	is	
approximately	constant…	
–  …until	early	2000s	

•  Heat	output	is	proportional	to	power	input	



9 17-214 

One	option:		fix	the	symptom	

•  Dissipate	the	heat	



10 17-214 

One	option:		fix	the	symptom	

•  Better:		Dissipate	the	heat	with	liquid	nitrogen	
–  Overclocking	by	Tom's	Hardware's	5	GHz	project	

http://www.tomshardware.com/reviews/5-ghz-project,731-8.html 



11 17-214 

Processor	characteristics	over	time	



12 17-214 

Concurrency	then	and	now	

•  In	the	past,	multi-threading	just	a	convenient	abstraction	
–  GUI	design:		event	dispatch	thread	
–  Server	design:		isolate	each	client's	work	
–  Workflow	design:		isolate	producers	and	consumers	

•  Now:		required	for	scalability	and	performance	



13 17-214 

We	are	all	concurrent	programmers	

•  Java	is	inherently	multithreaded	
•  To	utilize	modern	processors,	we	must	write	multithreaded	code	
•  Good	news:	a	lot	of	it	is	written	for	you	

–  Excellent	libraries	exist	(java.util.concurrent)	
•  Bad	news:	you	still	must	understand	fundamentals	

–  …to	use	libraries	effectively	
–  …to	debug	programs	that	make	use	of	them	



14 17-214 

Aside:		Concurrency	vs.	parallelism,	visualized	

•  Concurrency	without	parallelism:	

•  Concurrency	with	parallelism:	



15 17-214 

Basic	concurrency	in	Java	

•  An	interface	representing	a	task	
public	interface	Runnable	{	
				void	run();	
}	

•  A	class	to	execute	a	task	in	a	thread	
public	class	Thread	{	
				public	Thread(Runnable	task);	
				public	void	start();	
				public	void	join();			
				…	
}	



16 17-214 

Example:	Money-grab	(1)	

public	class	BankAccount	{	
				private	long	balance;	
	
				public	BankAccount(long	balance)	{	
								this.balance	=	balance;	
				}	
				static	void	transferFrom(BankAccount	source,	
																													BankAccount	dest,	long	amount)	{	
								source.balance	-=	amount;	
								dest.balance			+=	amount;	
				}	
				public	long	balance()	{	
								return	balance;	
				}	
}	



17 17-214 

Example:	Money-grab	(2)	
public	static	void	main(String[]	args)	throws	InterruptedException	

{	
				BankAccount	bugs	=	new	BankAccount(100);	
				BankAccount	daffy	=	new	BankAccount(100);	
					
				Thread	bugsThread	=	new	Thread(()->	{	
								for	(int	i	=	0;	i	<	1_000_000;	i++)	
												transferFrom(daffy,	bugs,	100);	
				});	
					
				Thread	daffyThread	=	new	Thread(()->	{	
								for	(int	i	=	0;	i	<	1_000_000;	i++)	
												transferFrom(bugs,	daffy,	100);	
				});	
					
				bugsThread.start();	daffyThread.start();	
				bugsThread.join();	daffyThread.join();	
				System.out.println(bugs.balance()	+	daffy.balance());	
}	



18 17-214 

What	went	wrong?	

•  Daffy	&	Bugs	threads	had	a	race	condition	for	shared	data	
–  Transfers	did	not	happen	in	sequence	

•  Reads	and	writes	interleaved	randomly	
–  Random	results	ensued	



19 17-214 

The	challenge	of	concurrency	control	

•  Not	enough	concurrency	control:		safety	failure	
–  Incorrect	computation	

•  Too	much	concurrency	control:		liveness	failure	
–  Possibly	no	computation	at	all	(deadlock	or	livelock)	



20 17-214 

Shared	mutable	state	requires	concurrency	control	

•  Three	basic	choices:	
1.  Don't	mutate:		share	only	immutable	state	
2.  Don't	share:		isolate	mutable	state	in	individual	threads	
3.  If	you	must	share	mutable	state:		limit	concurrency	to	achieve	safety	



21 17-214 

An	easy	fix:	

public	class	BankAccount	{	
				private	long	balance;	
	
				public	BankAccount(long	balance)	{	
								this.balance	=	balance;	
				}	
				static	synchronized	void	transferFrom(BankAccount	source,	
																													BankAccount	dest,	long	amount)	{	
								source.balance	-=	amount;	
								dest.balance			+=	amount;	
				}	
				public	synchronized	long	balance()	{	
								return	balance;	
				}	
}	



22 17-214 

Concurrency	control	with	Java's	intrinsic	locks	

•  synchronized	(lock)	{	…	}		
–  Synchronizes	entire	block	on	object	lock;	cannot	forget	to	unlock	
–  Intrinsic	locks	are	exclusive:	One	thread	at	a	time	holds	the	lock	
–  Intrinsic	locks	are	reentrant:		A	thread	can	repeatedly	get	same	lock	



23 17-214 

Concurrency	control	with	Java's	intrinsic	locks	

•  synchronized	(lock)	{	…	}		
–  Synchronizes	entire	block	on	object	lock;	cannot	forget	to	unlock	
–  Intrinsic	locks	are	exclusive:	One	thread	at	a	time	holds	the	lock	
–  Intrinsic	locks	are	reentrant:		A	thread	can	repeatedly	get	same	lock	

•  synchronized	on	an	instance	method		
–  Equivalent	to		synchronized	(this)	{	…	}	for	entire	method	

•  synchronized	on	a		static	method	in	class	Foo	
–  Equivalent	to		synchronized	(Foo.class)	{	…	}	for	entire	method	



24 17-214 

Another	example:	serial	number	generation	

public	class	SerialNumber	{	
				private	static	long	nextSerialNumber	=	0;	
				public	static	long	generateSerialNumber()	{	
								return	nextSerialNumber++;	
				}		
				public	static	void	main(String[]	args)	throws	InterruptedException	{	
								Thread	threads[]	=	new	Thread[5];	
								for	(int	i	=	0;	i	<	threads.length;	i++)	{	
												threads[i]	=	new	Thread(()	->	{	
																for	(int	j	=	0;	j	<	1_000_000;	j++)	
																				generateSerialNumber();	
												});	
												threads[i].start();	
								}	
								for(Thread	thread	:	threads)	thread.join();	
								System.out.println(generateSerialNumber());	
				}	
}	



25 17-214 

Aside:		Hardware	abstractions	

•  Supposedly:	
–  Thread	state	shared	in	memory	

	
•  A	(slightly)	more	accurate	view:	

–  Separate	state	stored	in	registers	and	caches,	even	if	shared	

Process 

Thread 

Memory 

Thread 

Process 

Thread 

Copy 

Thread 

Copy 

Memory 



26 17-214 

Atomicity	

•  An	action	is	atomic	if	it	is	indivisible	
–  Effectively,	it	happens	all	at	once	

•  No	effects	of	the	action	are	visible	until	it	is	complete	
•  No	other	actions	have	an	effect	during	the	action	

•  In	Java,	integer	increment	is	not	atomic	

i++;

1. Load data from variable i

2. Increment data by 1

3. Store data to variable i

is actually 



27 17-214 

Again,	the	fix	is	easy	

public	class	SerialNumber	{	
				private	static	int	nextSerialNumber	=	0;	
				public	static	synchronized	int	generateSerialNumber()	{	
								return	nextSerialNumber++;	
				}		
				public	static	void	main(String[]	args)	throws	InterruptedException{	
								Thread	threads[]	=	new	Thread[5];	
								for	(int	i	=	0;	i	<	threads.length;	i++)	{	
												threads[i]	=	new	Thread(()	->	{	
																for	(int	j	=	0;	j	<	1_000_000;	j++)	
																				generateSerialNumber();	
												});	
												threads[i].start();	
								}	
								for(Thread	thread	:	threads)	thread.join();	
								System.out.println(generateSerialNumber());	
				}	
}	



28 17-214 

Some	actions	are	atomic	

	

•  What	are	the	possible	values	for	ans?	

Thread A: 
ans = i;

Thread B: 
int i = 7;

Precondition: 
i = 42;



29 17-214 

Some	actions	are	atomic	

	

•  What	are	the	possible	values	for	ans?	

Thread A: 
ans = i;

Thread B: 

00000…00000111 i:

00000…00101010 i:

…
 

int i = 7;
Precondition: 

i = 42;



30 17-214 

Some	actions	are	atomic	

	

•  What	are	the	possible	values	for	ans?	

•  In	Java:	
–  Reading	an	int	variable	is	atomic	
–  Writing	an	int	variable	is	atomic	

–  Thankfully,																																																																													is	not	possible	

Thread A: 
ans = i;

Thread B: 

00000…00000111 i:

00000…00101010 i:

…
 

int i = 7;
Precondition: 

i = 42;

00000…00101111 ans:



31 17-214 

Bad	news:	some	simple	actions	are	not	atomic	

•  Consider	a	single	64-bit	long	value	

	
–  Concurrently:	

•  Thread	A	writing	high	bits	and	low	bits	
•  Thread	B	reading	high	bits	and	low	bits	

high bits low bits 

Thread A: 
ans = i;

Thread B: 
long i = 10000000000;

Precondition: 
i = 42;

01001…00000000 ans:

00000…00101010 ans:

01001…00101010 ans:

(10000000000) 

(42) 

(10000000042 or …) 



32 17-214 

Yet	another	example:	cooperative	thread	termination	

public	class	StopThread	{	
				private	static	boolean	stopRequested;	
	
				public	static	void	main(String[]	args)	throws	Exception	{	
								Thread	backgroundThread	=	new	Thread(()	->	{	
												while	(!stopRequested)	
																/*	Do	something	*/	;	
								});	
								backgroundThread.start();	
	
								TimeUnit.SECONDS.sleep(42);	
								stopRequested	=	true;	
				}	
}	



33 17-214 

What	went	wrong?	

•  In	the	absence	of	synchronization,	there	is	no	guarantee	as	to	
when,	if	ever,	one	thread	will	see	changes	made	by	another	

•  JVMs	can	and	do	perform	this	optimization:	
					while	(!done)	
									/*	do	something	*/	;	

				becomes:	
					if	(!done)	
									while	(true)	
													/*	do	something	*/	;	

Process 

Thread 

Copy 

Thread 

Copy 

Memory 



34 17-214 

How	do	you	fix	it?	

public	class	StopThread	{	
				private	static	boolean	stopRequested;	
				private	static	synchronized	void	requestStop()	{	
								stopRequested	=	true;	
				}	
				private	static	synchronized	boolean	stopRequested()	{	
								return	stopRequested;	
				}	
	
				public	static	void	main(String[]	args)	throws	Exception	{	
								Thread	backgroundThread	=	new	Thread(()	->	{	
												while	(!stopRequested())	
																/*	Do	something	*/	;	
								});	
								backgroundThread.start();	
	
								TimeUnit.SECONDS.sleep(42);	
								requestStop();	
				}	
}	



35 17-214 

A	better(?)	solution	

public	class	StopThread	{	
				private	static	volatile	boolean	stopRequested;	
	
				public	static	void	main(String[]	args)	throws	Exception	{	
								Thread	backgroundThread	=	new	Thread(()	->	{	
												while	(!stopRequested)	
																/*	Do	something	*/	;	
								});	
								backgroundThread.start();	
	
								TimeUnit.SECONDS.sleep(42);	
								stopRequested	=	true;	
				}	
}	



36 17-214 

Summary	

•  Like	it	or	not,	you’re	a	concurrent	programmer	
•  Ideally,	avoid	shared	mutable	state	

–  If	you	can’t	avoid	it,	synchronize	properly	
•  Even	atomic	operations	require	synchronization	

–  e.g.,	stopRequested	=	true	
•  Some	things	that	look	atomic	aren’t	(e.g.,	val++)	


