
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

The “Gang of Four” Design Pattern Tour

Charlie Garrod Chris Timperley

217-214

Administrivia

• No recitation this week

• Homework 6 checkpoint due at the end of today
– Parallel implementation due next Wednesday

317-214

Unfinished Business

417-214

517-214

Control deployments at run-time using feature flags

https://martinfowler.com/articles/feature-toggles.html
https://docs.microsoft.com/en-us/azure/devops/migrate/phase-features-with-feature-flags?view=azure-devops

https://martinfowler.com/articles/feature-toggles.html

617-214

Warning! Feature flags can be dangerous

In laymen’s terms, Knight Capital Group realized a $460 million
loss in 45-minutes. Remember, Knight only has $365 million in
cash and equivalents. In 45-minutes Knight went from being the
largest trader in US equities and a major market maker in the
NYSE and NASDAQ to bankrupt.

https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

717-214

Summary

• DevOps brings development and operations together
– Automation, Automation, Automation
– Infrastructure as code

• Release management
– Versioning and branching strategies

• Continuous deployment is increasingly common
• Exploit opportunities of continuous deployment; perform

testing in production and quickly rollback
– Experiment, measure, and improve

817-214

Today: A tour of the 23 “Gang of Four” patterns

1994

917-214

What patterns have we discussed in class?

1017-214

How did you use those design patterns?

• Strategy

• Template Method

• Façade

• Iterator

• Adapter

• Composite

• Decorator

• Observer

• Marker interface

• Different forms of
factories

• Concurrency patterns as
producer-consumer,
thread pool

• ...

1117-214

Why learn the Gang of Four design patterns?

• Seminal and canonical list of well-known patterns

– Patterns that have stood the test of time!

• Not all patterns are commonly used

• Does not cover all popular patterns

• At least know where to look up when somebody mentions the
“Bridge pattern”

1217-214

Today: A tour of the “Gang of Four” patterns

1. Creational Patterns
2. Structural Patterns
3. Behavioral Patterns

1317-214

1417-214

[Pattern Name]

• Intent – the aim of this pattern

• Use case – a motivating example

• Key types – the types that define pattern
– Italic type name indicates abstract class; typically this is an interface when

the pattern is used in Java

• JDK – example(s) of this pattern in the JDK

1517-214

I. Creational Patterns

1. Abstract factory
2. Builder
3. Factory method
4. Prototype
5. Singleton

1617-214

Problem: Build a GUI that supports multiple platforms

The rest of our code should be platform independent!

1717-214

public interface Window {
private void setTitle(String title);
private void repaint();

}

public class MSWindow implements Window {
...

}

public class MacOSXWindow implements Window {
...

}

Hide platform-specific details behind an interface

How can we write code that will create the correct Window for
the correct platform, without using conditionals?

1817-214

Abstract Factory Pattern

1917-214

public class GUIBuilder {
 public void buildWindow(AbstractWidgetFactory widgetFactory) {
 Window window = widgetFactory.createWindow();
 window.setTitle("New Window");

2017-214

1. Abstract Factory

• Intent: allow creation of families of related objects
independent of implementation

• Use case: look-and-feel in a GUI toolkit

– Each L&F has its own windows, scrollbars, etc.

• Key types: Factory with methods to create each family
member, Products

• JDK: not common

2117-214

Problem: Allow the construction to complex objects

public class User {
private final String firstName; // required
private final String lastName; // required
private final int age; // optional
private final String address; // optional
private final String phone; // optional
...

}

How can we handle all combinations of fields when constructing
User objects?

2217-214

One solution...

public User(String firstName, String lastName) {
 this(firstName, lastName, 0);
}
public User(String firstName, String lastName, int age) {
 this(firstName, lastName, age, “”);
}
public User(String firstName, String lastName, int age, String address) {
 this(firstName, lastName, age, address, “”);
}
public User(String firstName, String lastName, int age, String address, String phone) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.age = age;
 this.address = address;
 this.phone = phone;
}

What are the problems with this solution?

2317-214

One solution...

public User(String firstName, String lastName) {
 this(firstName, lastName, 0);
}
public User(String firstName, String lastName, int age) {
 this(firstName, lastName, age, “”);
}
public User(String firstName, String lastName, int age, String address) {
 this(firstName, lastName, age, address, “”);
}
public User(String firstName, String lastName, int age, String address, String phone) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.age = age;
 this.address = address;
 this.phone = phone;
}

Code becomes had to read and maintain with many attributes!

2417-214

Another solution: Default no-arg constructor plus setters
and getters for every attribute
public class User {
 private String firstName;
 private String lastName;
 private int age;
 private String address;
 private String phone;

 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 ...

Potentially inconsistent state; mutable

2517-214

A better solution: Use a Builder to hold build
instructions.

public class User {
 private final String firstName;
 private final String lastName;
 private final int age;
 private final String address;
 private final String phone;

 private User(UserBuilder builder) {
 this.firstName = builder.firstName;
 this.lastName = builder.lastName;
 …
 }

 public String getFirstName() { … }
 public String getLastName() { … }
 …
}

public static class Builder {
 private final String firstName;
 private final String lastName;
 private int age;
 private String address;
 private String phone;

 private UserBuilder(String firstName,
 String lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 public UserBuilder age(int age) {
 this.age = age;
 return this;
 }
 public UserBuilder phone(String phone) {
 this.phone = phone;
 return this;
 }
 …
}

new User.Builder(“Fred”, “Rogers”)
 .age(30)
 .phone(“1234567”)
 .address(...)
 .build();

2617-214

2. Builder

• Intent: separate construction of complex object from
representation so same creation process can create
different representations

• Use case: converting rich text to various formats

• Key types: Builder, ConcreteBuilders, Director, Products

• JDK: java.lang.StringBuilder, java.lang.StringBuffer

2717-214

3. Factory Method

• Intent: abstract creational method that lets subclasses
decide which class to instantiate

• Use case: creating documents in a framework

• Key types: Creator, which contains abstract method to
create an instance

• JDK: Iterable.iterator()

2817-214

Illustration: Factory Method

public interface Iterable<E> {
 public Iterator<E> iterator();
}

public class ArrayList<E> implements List<E> {
 public Iterator<E> iterator() { ... }
 ...
}

public class HashSet<E> implements Set<E> {
 public Iterator<E> iterator() { ... }
 ...
}

Collection<String> c = ...;

for (String s : c) // Creates an Iterator appropriate to c
 System.out.println(s);

2917-214

Problem: There should only be one instance of a class,
and that class should be globally accessible.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html

3017-214

Prevent client from creating instances by using a private
default constructor

public final class Elvis {
public static final ELVIS = new Elvis();
private Elvis() { }
...

}

3117-214

Better: Use a static method to create and retrieve the
single instance

public final class Elvis {
private static Elvis ELVIS;
private Elvis() { }
public static Elvis getInstance() {

if (ELVIS == null)
ELVIS = new Elvis();

return ELVIS;
}
...

}

Can you spot the bug in this code?

3217-214

Better: Use a static method to create and retrieve the
single instance

public final class Elvis {
private static Elvis ELVIS;
private Elvis() { }
public synchronized static Elvis getInstance() {

if (ELVIS == null)
ELVIS = new Elvis();

return ELVIS;
}
...

}

3317-214

Even better: Use an Enum for guaranteed serialization
and thread safety!

public enum Elvis {
ELVIS;

void sing(Song song) { … }
void eat(Food food) { … }
void playGuitar(Guitar guitar) { … }
...

}

3417-214

5. Singleton

• Intent: ensuring a class has only one instance

• Use case: GoF say print queue, file system, company in
an accounting system
– Compelling uses are rare but they do exist (e.g., stateless

function objects, EmptySet, etc.)

• Key types: Singleton

• JDK: java.lang.Runtime.getRuntime(),
 java.util.Collections.emptyList()

3517-214

Aside: Singleton is an instance-controlled class

• Static utility class: non-instantiable
– difficult to mock; violates information hiding

• Enum: one instance per value, all values known at
compile time

• Interned class: one canonical instance per value; new
values created at runtime
– Used for values -128 to 127 by Integer.valueOf

3617-214

Generally prefer singletons over static utility classes

• If you ever might need more than one instance in the future.
• If you need an object that implements other interfaces.

– Allows mocking and dependency injection

3717-214

II. Structural Patterns

1. Adapter
2. Bridge
3. Composite
4. Decorator
5. Façade
6. Flyweight
7. Proxy

3817-214

1. Adapter

• Intent: convert interface of a class into one that
another class requires, allowing interoperability
– make things work together after they're designed

• Use case: numerous, e.g., arrays vs. collections

• Key types: Target, Adaptee, Adapter

• JDK: Arrays.asList(T[])

3917-214

Illustration: Adapter

Have this and this? Use this!

Adaptee Target Adapter

4017-214

Problem: You want to treat structures of objects as if
they were an individual object.

Common operations: rotate, translate, explode, ...

4117-214

Compose objects into tree structures, and implement a
common interface.

House

Wall

Brick

* walls

* bricks

1

1

<<interface>>
PhysicalObject

public interface PhysicalObject {
 public void rotate(Orientation orientation);
 public void translate(Vector translation);
 public void explode(int explosiveness);
 ...
}

4217-214

3. Composite

• Intent: compose objects into tree structures. Let clients
treat primitives & compositions uniformly.

• Use case: GUI toolkit (widgets and containers)

• Key type: Component that represents both primitives
and their containers

• JDK: javax.swing.JComponent

4317-214

5. Façade

• Intent: provide a simple unified interface to a set of
interfaces in a subsystem
– GoF allow for variants where the complex underpinnings are

exposed and hidden

• Use case: any complex system; GoF use compiler

• Key types: Façade (the simple unified interface)

• JDK: java.util.concurrent.Executors

4417-214

Illustration: Façade

Façade

√√

√

√

√

√ √

Subsystem classes

4517-214

Problem: Imagine implementing a forest of individual
trees in a realtime game

http://gameprogrammingpatterns.com/flyweight.html

4617-214

Trick: most of the fields in these objects are the same
between all of those instances

http://gameprogrammingpatterns.com/flyweight.html

4717-214

6. Flyweight

• Intent: use sharing to support large numbers
of fine-grained objects efficiently

• Use case: characters in a document

• Key types: Flyweight (instance-controlled!)

– Some state can be extrinsic to reduce number of
instances

• JDK: Common! All enums, many others

– j.u.c.TimeUnit has number of units as extrinsic
state

4817-214

7. Proxy

• Intent: surrogate for another object

• Use case: delay loading of images till needed

• Key types: Subject, Proxy, RealSubject

• GoF mention several flavors
– virtual proxy – stand-in that instantiates lazily
– remote proxy – local representative for remote obj
– protection proxy – denies some ops to some users
– smart reference – does locking or ref. counting, e.g.

• JDK: remote method invocation, collections wrappers

4917-214

Illustration: Proxy

Virtual Proxy

Smart Reference Remote Proxy

SynchronizedList ArrayList

aTextDocument
image anImage

data

in memory on disk

anImageProxy
fileName

Client

Proxy

Server

5017-214

III. Behavioral Patterns

1. Chain of Responsibility
2. Command
3. Interpreter
4. Iterator
5. Mediator
6. Memento
7. Observer
8. State
9. Strategy
10. Template method
11. Visitor

5117-214

Problem: An event or request should be handled by one
of its ancestral objects

https://refactoring.guru/design-patterns/chain-of-responsibility

5217-214

1. Chain of Responsibility

• Intent: avoid coupling sender to receiver by passing
request along until someone handles it

• Use case: context-sensitive help facility

• Key types: RequestHandler

• JDK: ClassLoader, Properties

• Exception handling could be considered a form of Chain
of Responsibility pattern

5317-214

Problem: Components are tightly coupled.

https://refactoring.guru/design-patterns/mediator

Makes it difficult to understand, test, and reuse code :-(

5417-214

Solution: Introduce a mediator to allow components to
communicate indirectly

https://refactoring.guru/design-patterns/mediator

5517-214

Analogy: Can you spot the mediator?

5617-214

5. Mediator

• Intent: define an object that encapsulates how a set of
objects interact, to reduce coupling.
– 𝓞(n) couplings instead of 𝓞(n2)

• Use case: dialog box where change in one component
affects behavior of others

• Key types: Mediator, Components

• JDK: Unclear

5717-214

Problem: Without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

I.e., add an “undo” ability to a text editor.

5817-214

public class Editor {
private String text;
private Font font;
private Position cursorPosition;
…

// a poor solution :-(
public void setState(String text, Font font, ...) {

this.text = text;
...

}
}

Problem: Without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

Why is it a bad idea for a client to use setState to restore state?

5917-214

public class Editor {
private String text;
private Font font;
private Position cursorPosition;
…

// a better solution :-)
private class Memento {

private String text;
...

}
public Memento save() {

return new Memento(text, font, ...);
}
public void restore(Memento memento) {

text = memento.text;
...

Problem: Without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

6017-214

6. Memento

• Intent: without violating encapsulation, allow client to
capture an object’s state, and restore later

• Use case: when you need to provide an undo
mechanism in your applications, when the internal
state of an object may need to be restored at a later
stage (e.g., text editor)

• Key type: Memento (opaque state object)

• JDK: none that I’m aware of

6117-214

Problem: An object should behave differently based upon
its internal state.

https://gameprogrammingpatterns.com/state.html

public class GameCharacter {
 …
 public void handleInput(Input input) {
 ...
 }
 …
}

6217-214

<<interface>>
CharacterState

Solution: Delegate behavior to a State object!

DuckingState

DivingState

StandingState

JumpingState

Character

6317-214

8. State

• Intent: allow an object to alter its behavior when
internal state changes. “Object will appear to change
class.”

• Use case: TCP Connection, Game AI

• Key type: State (Object delegates to state!)

• JDK: none that I’m aware of, but…
– Works great in Java
– Use enums as states
– Use AtomicReference<State> to store it

6417-214

Conclusion

• Now you know most of the Gang of Four patterns

• Definitions can be vague

• Coverage is incomplete

• But they’re extremely valuable

– They gave us a vocabulary

– And a way of thinking about software

• Look for patterns as you read and write software

– GoF, non-GoF, and undiscovered

