Principles of Software Construction:
Objects, Design, and Concurrency

The “Gang of Four” Design Pattern Tour

Charlie Garrod Chris Timperley

Carnegie Mellon University
School of Computer Science

institute for
I S SOFTWARE
RESEARCH

(]
institute f
17-214 1 ‘s“ét%%“»t&r?é
RESEARCH

Administrivia

* No recitation this week
* Homework 6 checkpoint due at the end of today

— Parallel implementation due next Wednesday

(]
institute f
17-214 2 ‘s“ététT“»tveAr‘?é
RESEARCH

Unfinished Business

L . .
17-214 O | S (B
RRRRRRR H

Load balancer

Red/black | _ __ _ p-~" "~

oo | NENREREN (111111l

Load balancer Validate Load balancer

Rolling red/black i/\‘ i/\‘ s
({11 ([]]]]] [| |

Load balancer

Load balancer

Canary i/\‘ i/\‘ s
(L] (L] il

OLD VERSION
iM?‘Fﬂctmmw 'mm@ag
|SERVER SERVER
L : o L d
oA O 0) SERS
u
© 5
T\ —»J-— - \
SOME (EW VERSION
USER ROUTER Some
(5%)
|
.
\ J

[]
institute F
17-214 a L
RESEARCH

Control deployments at run-time using feature flags

years

months

weeks

days

Call to feature flag
service to query value '
16

elaew..
---------- =
GateKeeper
Project: 64bit_rollout
Rank Move Group D
all users
(delete)
A . ‘I : P I|
= g v 1Permission |
-"§ L v Toggles !
1 [2
O i Ops 1 N L
g’ : Toggles !
'Y L]
9 “ :' 7 i Va
\, ¢' l' ‘|
-y .7 * . .]
e R, TR 'Experiment »
. . v Toggles i
g Release E . ;
; Toggles K VR
T B dynamism_

New Restraint

changes with
a deployment

changes with runtime
re-configuration

https://martinfowler.com/articles/feature-toggles.html
https://docs.microsoft.com/en-us/azure/devops/migrate/phase-features-with-feature-flags?view=azure-devops

17-214

changes with
each request

| History | RenderTime

WHITELIST ME

Age - Younger
Application
Browser

| Code Location
Country

' Datacenter

1 Is Employee
Friend Count - Less
Friend Count - More
Gatekeeper project

' ID

Locale

| Network

os

Remote IP

Server IP

Server Time - After
Server Time - Before

BLACKLIST ME

On
LEVl Cancel
- vuvtxzdqrp
n/a

Alpha Def. n/a

Updated 4/21/09 3:23:04pm
Console none
Name

Description 64 bit rollout
Needs Flush No

°
institute for
5 I S SOFTWARE
RESEARCH

https://martinfowler.com/articles/feature-toggles.html

Warning! Feature flags can be dangerous

Knightmare: A DevOps
Cautionary Tale

I was speaking at a conference last year on the topics of DevOps, Configuration as Code, and
Continuous Delivery and used the following story to demonstrate the importance making
deployments fully automated and repeatable as part of a DevOps/Continuous Delivery initiative.
Since that conference I have been asked by several people to share the story through my blog.
This story is true — this really happened. This is my telling of the story based on what I have

read (I was not involved in this).

This is the story of how a company with nearly $400 million in assets went bankrupt in 45-

minutes because of a failed deployment.

In laymen’s terms, Knight Capital Group realized a $460 million
loss in 45-minutes. Remember, Knight only has $365 million in
cash and equivalents. In 45-minutes Knight went from being the
largest trader in US equities and a major market maker in the
NYSE and NASDAQ, to bankrupt.

https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
[

institute f
17-214 6 SOFTWARE
RESEARCH

https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

Summary

- DevOps brings development and operations together
— Automation, Automation, Automation
— Infrastructure as code

- Release management
— Versioning and branching strategies

- Continuous deployment is increasingly common
- Exploit opportunities of continuous deployment; perform

testing in production and quickly rollback
— Experiment, measure, and improve

(]
institute f
17-214 7 ‘s“é?%“@?é
RESEARCH

Today: A tour of the 23 “Gang of Four” patterns

vy
>
=
U
i
7
0
>
iz
g
<
Z
=
v
-
m
<
=l
=
'®)
s
m
u
o
)
=
Z
Z
r
@)
@)
9,
rd
=
AL
-
bl
Z
0
v
m
z
m
v

WSl » BLULLED)

SOPIUSSIIAN e uosuyof

F=

— 1994

institute f
17-214 8 SOFTWARE
RESEARCH

What patterns have we discussed in class?

®
17-214 9 SOFTWARE
RESEARCH

How did you use those design patterns?

e Strategy e Observer

e Template Method Marker interface

* Facade e Different forms of

e |terator factories

* Adapter * Concurrency patterns as
producer-consumetr,

* Composite

thread pool
* Decorator P

- institute for
17-214 o [

Why learn the Gang of Four design patterns?

Seminal and canonical list of well-known patterns

— Patterns that have stood the test of time!

Not all patterns are commonly used

Does not cover all popular patterns

At least know where to look up when somebody mentions the
“Bridge pattern”

[)
insti f
17-214 11 e o
RESEARCH

Today: A tour of the “Gang of Four” patterns

1. Creational Patterns

2. Structural Patterns /

3. Behavioral Patterns

SOPISSIIA @ uosuyof

vy
2z
g
-
7
74
=
>
-
m
Z
0
7
0
9
m
u
o
)
o
7/
>
(=
o)
2,
“
rd
S
P
=
74
0
v
m
%
z
=
w

WS » BLULLED)

: @&

institute F
17-214 12 DB
RESEARCH

17-214

Strategy

states \

strategies
/ sharing j
terminal

sharing symbols

Mediator

State

defining

algorithm's

Steps™~_

Prototype Ry

Template Method

configure factory
dynamically

\

Abstract Facto
/ ry

single
instance

SIngl'e/ton /

single —— |

instance

——p! Factory Method

implement using

Facade

/————— Memento Proxy
saving state
i Adapter
Builder of ftera<
\ Iterator avoiding
creating hysteresis Bricoe
composites \
enumerating
children
adding composed
responsibilities using Command
/ fo objects /_1
Decorator gg;‘infg'ogs s ol | TN
" lefining defini
adding traversals ek
l operations | the chain
; defining \,(isi
Flyweight grammar Visitor
changing skin
versus guts
adding
sharing Interpreter |——— operations Chain of Responsibility

complex

dependenc
managame%t Observer

- Often uses

institute for
SOFTWARE
RESEARCH

[Pattern Name]

Intent — the aim of this pattern
* Use case —a motivating example

* Key types — the types that define pattern

— Italic type name indicates abstract class; typically this is an interface when
the pattern is used in Java

* JDK — example(s) of this pattern in the JDK

[
institute f
17-214 14 SOFTWARE
RESEARCH

|. Creational Patterns

Abstract factory
Builder
Factory method

Prototype

Singleton

o & b~

[)
insti f
17-214 15 e o
RESEARCH

Problem: Build a GUI that supports multiple platforms

B WindowTitle [-ollx]
MenuWidgetl MenuWidget2

SelectedTab | OtherTab

[] UncheckedCheckBox
[v] CheckedCheckBox

[JinactiveCheckBox

ubuntu

The rest of our code should be platform independent!
17-214

[J
institute for
16 I S SOFTWARE
RESEARCH

Hide platform-specific details behind an interface

public interface Window {
private void setTitle(String title);
private void repaint();

}

public class MSWindow implements Window {

}

public class MacOSXWindow implements Window {

}

How can we write code that will create the correct Window for
the correct platform, without using conditionals?

[)
insti f
17-214 17 e o
RESEARCH

Abstract Factory Pattern

«Client»
GUIBuilder

Main

+ buildWindow(AbstractiidgetF actony) : void

+ main(String[]) : void

xAbstractProducts
Window

+
+

setTitle(String) : void

repaint() : void

«ConcreteProduct»
MSWindow

+
+

setTitle(String) : void
repaint) : void

/

«ConcreteProduct»
MacOSXWindow

+
+

setTitle(String) : void
repaint) : void

\

aAbstractF actonyx
AbstractWidget Factory
+ createWindow) : Window
«ConcreteF actonss «ConcreteF actonys
MsWindowsWidgetFactory MacO0S XWidgetFactory
+ createWindow() : Window + createWindow) : Window
17-214

institute for
18 I S SOFTWARE
RESEARCH

public class GUIBuilder {
public void buildWindow(AbstractWidgetFactory widgetFactory) {
Window window = widgetFactory.createWindow();
window.setTitle("New Window");

«Clie.nt» Main
GUIBuilder | =
B + main(String]} : void
+ buildWindow(AbstractiidgetF actony) : void
«wAbstractProducts
afbstractF actony» Window
AbstractWidget Factory
+ setTitle(String) : void
+ createWindow) : Window + repaint) : void

«ConcreteF actonss «ConcreteF actorys «ConcreteProducts «ConcreteProducts
MsWindowsWidget Factory Mac0S ¥WidgetFactory MSWindow MacOSXWindow
+ createWindow : Window + createWindow) : Window + setTitle(String) : void + setTitle(String) : void

+ repaint(): void + repaint() : void

insti f
17-214 19 L
RESEARCH

1. Abstract Factory

* Intent: allow creation of families of related objects
independent of implementation

e Use case: look-and-feel in a GUI toolkit
— Each L&F has its own windows, scrollbars, etc.

* Key types: Factory with methods to create each family
member, Products

* JDK: not common

[)
insti f
17-214 20 e o
RESEARCH

Problem: Allow the construction to complex objects

public class User {

private final String firstName; // required
private final String lastName; // required
private final int age; // optional

private final String address; // optional
private final String phone; // optional

How can we handle all combinations of fields when constructing
User objects?

[)
insti f
17-214 21 R
RESEARCH

One solution...

public User(String firstName, String lastName) {
this(firstName, lastName, 0);

¥

public User(String firstName, String lastName, int age) {
this(firstName, lastName, age, “");

¥

public User(String firstName, String lastName, int age, String address) {
this(firstName, lastName, age, address, “");

¥

public User(String firstName, String lastName, int age, String address, String phone) {
this.firstName = firstName;
this.lastName = lastName;
this.age = age;
this.address = address;
this.phone = phone;

What are the problems with this solution?

institute f
17-214 22 SOFTWARE
RESEARCH

One solution...

public User(String firstName, String lastName) {
this(firstName, lastName, 0);

Iy

public User(String firstName, String lastName, int age) {
this(firstName, lastName, age, “");

Iy

public User(String firstName, String lastName, int age, String address) {
this(firstName, lastName, age, address, “");

Iy

public User(String firstName, String lastName, int age, String address, String phone) {
this.firstName = firstName;
this.lastName = lastName;
this.age = age;
this.address = address;
this.phone = phone;

Code becomes had to read and maintain with many attributes!

[)
insti f
17-214 23 L
RESEARCH

Another solution: Default no-arg constructor plus setters
and getters for every attribute

public class User {

private String firstName;
private String lastName;
private int age;

private String address;
private String phone;

public String getFirstName() {
return firstName;

¥

public void setFirstName(String firstName) {
this.firstName = firstName;

}

public String getLastName() {
return lastName;

}

public void setLastName(String lastName) {
this.lastName = lastName;

}

Potentially inconsistent state; mutable

insti f
17-214 24 R
RESEARCH

A better solution: Use a Builder to hold build

Instructions.
public class User { public static class Builder {
private final String firstName; private final String firstName;
private final String lastName; private final String lastName;
private final int age; private int age;
private final String address; private String address;
private final String phone; private String phone;
private User(UserBuilder builder) { private UserBuilder(String firstName,
this.firstName = builder.firstName; String lastName) {
this.lastName = builder.lastName; this.firstName = firstName;
- this.lastName = lastName;
} +
public String getFirstName() { .. } public UserBuilder age(int age) {
public String getLastName() { .. } this.age = age;
- return this;
} +
public UserBuilder phone(String phone) {
this.phone = phone;
) return this;
new User.Builder(“Fred”, "“Rogers”) }
.age(30)
.phone(“1234567") } -
.address(...)
.build();

insti f
17-214 25 R
RESEARCH

2. Builder

* Intent: separate construction of complex object from
representation so same creation process can create
different representations

e Use case: converting rich text to various formats
* Key types: Builder, ConcreteBuilders, Director, Products
* JDK: java.lang.StringBuilder, java.lang.StringBuffer

[)
insti f
17-214 26 e o
RESEARCH

3. Factory Method

* |ntent: abstract creational method that lets subclasses
decide which class to instantiate

e Use case: creating documents in a framework

* Key types: Creator, which contains abstract method to
create an instance

* JDK: Iterable.iterator()

[)
insti f
17-214 27 e o
RESEARCH

Illustration: Factory Method

public interface Iterable<E> {
public Iterator<gE> iterator();
}

public class ArrayList<E> implements List<E> {

public Iterator<gE> iterator() { ... }
, e

public class HashSet<E> implements Set<E> {
public Iterator<gE> iterator() { ... }

}
Collection<String> c = ...;

for (String s : c¢) // Creates an Iterator appropriate to c
System.out.println(s);

[)
insti f
17-214 28 L
RESEARCH

Problem: There should only be one instance of a class,
and that class should be globally accessible.

Module java.base
Package java.lang

Class Runtime

java.lang.Object
java.lang.Runtime

public class Runtime
extends Object

Every Java application has a single instance of class Runtime that allows the application to interface with the
environment in which the application is running. The current runtime can be obtained from the getRuntime method.

An application cannot create its own instance of this class.

Since:
1.0

See Also:

getRuntime()

institute f
17-214 29 SOFTWARE
RESEARCH

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Runtime.html

Prevent client from creating instances by using a private
default constructor

public final class Elvis {

public static final ELVIS = new Elvis();
private Elvis() { }

[
institute f
17-214 30 SOFTWARE
RESEARCH

Better: Use a static method to create and retrieve the
single instance

public final class Elvis {

private static Elvis ELVIS;
private Elvis() { }
public static Elvis getInstance() {
1if (ELVIS == null)
ELVIS = new Elvis();
return ELVIS;

Can you spot the bug in this code?

[
institute f
17-214 31 SOFTWARE
RESEARCH

Better: Use a static method to create and retrieve the
single instance

public final class Elvis {

private static Elvis ELVIS;
private Elvis() { }
public synchronized static Elvis getlInstance() {
if (ELVIS == null)
ELVIS = new Elvis();
return ELVIS;

[
institute f
17-214 32 SOFTWARE
RESEARCH

Even better: Use an Enum for guaranteed serialization
and thread safety!

public enum Elvis {
ELVIS;

void sing(Song song) { ..}

void eat(Food food) { .. }
volid playGuitar(Guitar guitar) { .. }

[
institute f
17-214 33 SOFTWARE
RESEARCH

5. Singleton

* |Intent: ensuring a class has only one instance

e Use case: GoF say print queue, file system, company in
an accounting system

— Compelling uses are rare but they do exist (e.g., stateless
function objects, EmptySet, etc.)

* Key types: Singleton

« JDK: java.lang.Runtime.getRuntime(),
java.util.Collections.emptylList()

[
institute f
17-214 34 SOFTWARE
RESEARCH

Aside: Singleton is an instance-controlled class

 Static utility class: non-instantiable
— difficult to mock; violates information hiding

* Enum: one instance per value, all values known at
compile time
* Interned class: one canonical instance per value; new

values created at runtime
— Used for values -128 to 127 by Integer.valueOf

[)
insti f
17-214 35 e o
RESEARCH

Generally prefer singletons over static utility classes

* |f you ever might need more than one instance in the future.
* |f you need an object that implements other interfaces.
— Allows mocking and dependency injection

[
institute f
17-214 36 SOFTWARE
RESEARCH

Il. Structural Patterns

1. Adapter
2—Bridge

3. Composite
4—Pecorator
5. Facade

6. Flyweight
7. Proxy

[J
institute for
17-214 37 e

1. Adapter

* Intent: convert interface of a class into one that
another class requires, allowing interoperability
— make things work together after they're designed

e Use case: numerous, e.g., arrays vs. collections
* Key types: Target, Adaptee, Adapter
* IDK: Arrays.asList(T[])

- institute ror
17-214 38 [NYf sorme

lllustration: Adapter

Have this and this? Use this!

; |
| ire—

\ BELKIN

Adaptee Target Adapter

[]
insttute F
17-214 39 SOFTWARE
RESEARCH

Problem: You want to treat structures of objects as if
they were an individual object.

Common operations: rotate, translate, explode, ...

[J
m—v
17-214 40 SOFTWARE
RESEARCH

Compose objects into tree structures, and implement a
common interface.

House - = public.interface Physicqubjegt { _
I public void rotate(Orientation orientation);
$7 I public void translate(Vector translation);
I public void explode(int explosiveness);
|
I }
|
* Wa||S I
I .
<<interface>>
Wall - = = = — . ,
I PhysicalObject
‘1 |
|
|
|
|
* bricks I
|
Brick - —=1
- institute for
17-214 41 SO

3. Composite

* Intent: compose objects into tree structures. Let clients
treat primitives & compositions uniformly.

e Use case: GUI toolkit (widgets and containers)

* Key type: Component that represents both primitives
and their containers

* JDK: javax.swing.JComponent

17-214 42 SO

5. Facade

* Intent: provide a simple unified interface to a set of
interfaces in a subsystem

— GoF allow for variants where the complex underpinnings are
exposed and hidden

e Use case: any complex system; GoF use compiler
* Key types: Facade (the simple unified interface)
* JDK: java.util.concurrent.Executors

[
institute f
17-214 43 SOFTWARE
RESEARCH

lllustration: Facade

Subsystem classes

Facade

L

17-214

44

institute for
SOFTWARE
RESEARCH

Problem: Imagine implementing a forest of individual

trees in a realtime game

A

A

MESH

BARK

=

PARANS

17-214

BARK.

(EAVES

POSITION

PARAMS

LERVES

POSITION

PRR_AMS

MESH

BARK

POSITION

LéAutSl

PARAMS
Pos TIdN

http://gameprogrammingpatterns.com/flyweight.html

Trick: most of the fields in these objects are the same

between all of those instances

A

&

2

A

Lt PARAMS
PARAMS PAZAMS PARANS
P&SITION PasITION POSITION PASITIEN
mooeL | MESH BARK LEAVES

17-214

http://gameprogrammingpatterns.com/flyweight.html

46

. . .
institute for

| S SOFTWARE
RESEARCH

6. Flyweight

* |Intent: use sharing to support large numbers
of fine-grained objects efficiently

e Use case: characters in a document
* Key types: Flyweight (instance-controlled!)

— Some state can be extrinsic to reduce number of
Instances

* JDK: Common! All enums, many others

— j.u.c.TimeUn1it has number of units as extrinsic
state

[
institute f
17-214 47 SOFTWARE
RESEARCH

/. Proxy

* Intent: surrogate for another object
e Use case: delay loading of images till needed
* Key types: Subject, Proxy, RealSubject

* GoF mention several flavors
— virtual proxy — stand-in that instantiates lazily
— remote proxy — local representative for remote obj
— protection proxy — denies some ops to some users
— smart reference — does locking or ref. counting, e.g.

* JDK: remote method invocation, collections wrappers

[
institute f
17-214 48 SOFTWARE
RESEARCH

lllustration: Proxy

Virtual Proxy

f aTextDocument)

fanImageProxy]

limage [fleName +—-m {:::;nage]

| in memory | | on disk I

Smart Reference Remote Proxy
SynchronizedList Arraylist H

[
institute f
17-214 49 SOFTWARE
RESEARCH

IIl. Behavioral Patterns

1. Chain of Responsibility
2—Command
3—interpreter
4—tterator

5. Mediator

6. Memento
+—Observer

8. State

9—Strategy
+o—Femptatemethod

[
institute f
17-214 50 SOFTWARE
RESEARCH

Problem: An event or request should be handled by one
of its ancestral objects

B Name Chooser @

Bahy names ending in O:

Text

Window

o / \

SubPanel

£7

Button

Image

Arlo Cosmo
Laszlo Milo
Rocco Rollo

Elmo Hugo Jethro
Nemo Otto Ringo

17-214

Cancel Set

Toolbar

4\ ™\

Button

Form Button
Input Button

Checkbox

https://refactoring.guru/design-patterns/chain-of-responsibility

Button

institute for
51 I S SOFTWARE
RESEARCH

1. Chain of Responsibility

* Intent: avoid coupling sender to receiver by passing
request along until someone handles it

* Use case: context-sensitive help facility
e Key types: RequestHandler

JDK: ClassLoader, Properties

» Exception handling could be considered a form of Chain
of Responsibility pattern

17-214 52 SO

Problem: Components are tightly coupled.

& Profile Dialog & LogIn Dialog
Button [<——>| Dialog \ Button |<—>| Dialog
putton Tabs TextField

Checkbox [<>| TextField TextField
) | (e

Checkbox if (dialog.name == "profile_form")
- dialog A ,
if (dialog.name == "login_form")
+ onCheck()

Makes it difficult to understand, test, and reuse code :-(

17-214 https://refactoring.guru/design-patterns/mediator 53 el

RESEARCH

Solution: Introduce a mediator to allow components to
communicate indirectly

17-214

& Profile Dialog
Button |<—>| Dialog W
Button Tabs
Checkbox

TextField]

& LogIn Dialog

Button |es

Dialog

Checkbox

TextField

TextField

https://refactoring.guru/design-patterns/mediator

54

institute for
SOFTWARE
RESEARCH

Analogy: Can you spot the mediator?

BEETse., | <«

!
,/
@ "-—--->_

[]
institute for
17-214 55 sorivase

5. Mediator

Intent: define an object that encapsulates how a set of
objects interact, to reduce coupling.

— O(n) couplings instead of O(n?)

* Use case: dialog box where change in one component
affects behavior of others

* Key types: Mediator, Components
* JDK: Unclear

17-214 56 SO

Problem: Without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

Copy of Testing [a
File Edit View Inset Format Tools Table Add
= e~ P 100% - Normaltext - Arial

Google docs undo cirte2 |

l.e., add an “undo” ability to a text editor.

[
institute f
17-214 57 SOFTWARE
RESEARCH

Problem: Without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

public class Editor {

private String text;
private Font font;
private Position cursorPosition;

public void setState(String text, Font font, ...) {
this.text = text;

Why is it a bad idea for a client to use setState to restore state?

[
institute f
17-214 58 SOFTWARE
RESEARCH

Problem: Without violating encapsulation, allow client of
Editor to capture the object’s state and restore later

public class Editor {

private String text;
private Font font;
private Position cursorPosition;

// a better solution :-)
private class Memento {
private String text;

}
public Memento save() {

return new Memento(text, font, ...);
}

public void restore(Memento memento) {
text = memento.text;

[
institute f
17-214 59 SOFTWARE
RESEARCH

6. Memento

* Intent: without violating encapsulation, allow client to
capture an object’s state, and restore later

* Use case: when you need to provide an undo
mechanism in your applications, when the internal
state of an object may need to be restored at a later
stage (e.g., text editor)

* Key type: Memento (opaque state object)
* JDK: none that I’'m aware of

17-214 60 SO

Problem: An object should behave differently based upon
its internal state.

SUPERNINTENDD.

PP\
SELECT START '\'(.\‘K
e _ S

E—— T ‘ i | gTAv\)D\Y\)6 '\ |
ReLense (¥
public class GameCharacter { ReLel. O FF?ss
(T ree@ 1
public void handleInput(Input input) {
puc,pme.\/ TORARG |

! | - 7

. institute for
17-214 https://gameprogrammingpatterns.com/state.html 61 SOFTWARE

Solution: Delegate behavior to a State object!

DuckingState

DivingState

StandingState

JumpingState

17-214

<<interface>>
CharacterState

Character
© institute for
62 SO

8. State

* Intent: allow an object to alter its behavior when
internal state changes. “Object will appear to change
class.”

* Use case: TCP Connection, Game Al
* Key type: State (Object delegates to state!)

* JDK: none that I’'m aware of, but...
— Works great in Java
— Use enums as states
— Use AtomicReference<State> to store it

17-214 63 SO

Conclusion

Now you know most of the Gang of Four patterns

Definitions can be vague

Coverage is incomplete

But they’re extremely valuable
— They gave us a vocabulary
— And a way of thinking about software

Look for patterns as you read and write software
— GoF, non-GoF, and undiscovered

[
institute f
17-214 64 SOFTWARE
RESEARCH

