
1 17-214

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Designing	classes	
	
Introduction	to	design	patterns	
	
Josh	Bloch 	 	Charlie	Garrod	

2 17-214

Administrivia	

•  Homework	1	feedback	in	your	GitHub	repository	
•  Homework	2	due	tonight	11:59	p.m.	
•  Homework	3	available	tomorrow	
•  Optional	reading	due	today:		Effective	Java	Items	18,	19,	and	20	

–  Required	reading	due	next	Tuesday:		UML	&	Patterns	Ch	9	and	10	

3 17-214

Key	concepts	from	Tuesday	

4 17-214

You	can	add	constant-specific	behavior	to	an	enum	

•  Each	constant	can	have	its	own	override	of	a	method	
–  Don't	do	this	unless	you	have	to	
–  If	adding	data	is	sufficient,	do	that	instead	
	
public	interface	Filter	{	
				Image	transform(Image	original);	
}	

		
public	enum	InstagramFilter	implements	Filter	{	

						EARLYBIRD	{public	Image	transform(Image	original)	{	...	}},	
						MAYFAIR			{public	Image	transform(Image	original)	{	...	}},	
						AMARO					{public	Image	transform(Image	original)	{	...	}},	
						RISE						{public	Image	transform(Image	original)	{	...	}};	

	}	
	

				See	Effective	Java	Items	34	–	38	and	42	for	more	information	

5 17-214

Behavioral	subtyping	

•  e.g.,	Compiler-enforced	rules	in	Java:	
–  Subtypes	can	add,	but	not	remove	methods	
–  Concrete	class	must	implement	all	undefined	methods	
–  Overriding	method	must	return	same	type	or	subtype	
–  Overriding	method	must	accept	the	same	parameter	types	
–  Overriding	method	may	not	throw	additional	exceptions	

•  Also	applies	to	specified	behavior.		Subtypes	must	have:	
–  Same	or	stronger	invariants	
–  Same	or	stronger	postconditions	for	all	methods	
–  Same	or	weaker	preconditions	for	all	methods	

Let q(x) be a property provable about objects x of type T. Then q(y)
should be provable for objects y of type S where S is a subtype of T.

Barbara Liskov

This is called the Liskov
Substitution Principle.

6 17-214

This	Square	is	not	a	behavioral	subtype	of	Rectangle	

class	Rectangle	{	
	//@	invariant	h>0	&&	w>0;	
	int	h,	w;	
		
	Rectangle(int	h,	int	w)	{	
	 	this.h=h;	this.w=w;	
	}	

	
			//@	requires	factor	>	0;	

	void	scale(int	factor)	{	
	 	w=w*factor;	
	 	h=h*factor;	
	}	

			//@	requires	neww	>	0;	
			//@	ensures	w==neww		
													&&	h==old.h;	

	void	setWidth(int	neww)	{	
	 	w=neww;	
	}	

}	

class	Square	extends	Rectangle	{	
			//@	invariant	h>0	&&	w>0;	
			//@	invariant	h==w;	

	Square(int	w)	{	
	 	super(w,	w);	
	}	

	
			//@	requires	neww	>	0;	
			//@	ensures	w==neww	
													&&	h==neww;	
			@Override	
			void	setWidth(int	neww)	{	
						w=neww;	
						h=neww;	
			}	
}	

7 17-214

Delegation	vs.	inheritance	summary	

•  Inheritance	can	improve	modeling	flexibility	
•  Usually,	favor	composition/delegation	over	inheritance	

–  Inheritance	violates	information	hiding	
–  Delegation	supports	information	hiding	

•  Design	and	document	for	inheritance,	or	prohibit	it	
–  Document	requirements	for	overriding	any	method	

8 17-214

Note:	type-casting	in	Java	

•  Sometimes	you	want	a	different	type	than	you	have	
–  e.g., 	double	pi	=	3.14;	
							 	int	indianaPi	=	(int)	pi;	

•  Useful	if	you	know	you	have	a	more	specific	subtype:	
–  e.g.,			 		
 Account	acct	=	…;	
		CheckingAccount	checkingAcct	=		
																							(CheckingAccount)	acct;	
		long	fee	=	checkingAcct.getFee();	
–  Will	get	a	ClassCastException	if	types	are	incompatible	

•  Advice:		avoid	downcasting	types	
–  Never(?)	downcast	within	superclass	to	a	subclass	

9 17-214

An	aside:	instanceof	

•  Operator	that	tests	whether	an	object	is	of	a	given	class	
public	void	doSomething(Account	acct)	{	
				long	adj	=	0;	
				if	(acct	instanceof	CheckingAccount)	{	
								checkingAcct	=	(CheckingAccount)	acct;	
								adj	=	checkingAcct.getFee();	

				}	else	if	(acct	instanceof	SavingsAccount)	{	
								savingsAcct	=	(SavingsAccount)	acct;	
								adj	=	savingsAcct.getInterest();	

				}	
				…	
}	

•  Advice:		avoid	instanceof	if	possible	
–  Never(?)	use	instanceof	in	a	superclass	to	check	type	against	subclass	

	

Do not
do this.
This code
is bad.

10 17-214

An	aside:	instanceof	

•  Operator	that	tests	whether	an	object	is	of	a	given	class	
public	void	doSomething(Account	acct)	{	
				long	adj	=	0;	
				if	(acct	instanceof	CheckingAccount)	{	
								checkingAcct	=	(CheckingAccount)	acct;	
								adj	=	checkingAcct.getFee();	

				}	else	if	(acct	instanceof	SavingsAccount)	{	
								savingsAcct	=	(SavingsAccount)	acct;	
								adj	=	savingsAcct.getInterest();	

				}	else	if	(acct	instanceof	InterestCheckingAccount)	{	
								icAccount	=	(InterestCheckingAccount)	acct;	
								adj	=	icAccount.getInterest();	
								adj	-=	icAccount.getFee();	
				}	
				…	
}	

Do not
do this.
This code
is bad.

11 17-214

Java	details:		Dynamic	method	dispatch	

1.  (Compile	time)	Determine	which	class	to	look	in	
2.  (Compile	time)	Determine	method	signature	to	be	executed	

1.  Find	all	accessible,	applicable	methods	
2.  Select	most	specific	matching	method	

12 17-214

Java	details:		Dynamic	method	dispatch	

1.  (Compile	time)	Determine	which	class	to	look	in	
2.  (Compile	time)	Determine	method	signature	to	be	executed	

1.  Find	all	accessible,	applicable	methods	
2.  Select	most	specific	matching	method	

3.  (Run	time)	Determine	dynamic	class	of	the	receiver	
4.  (Run	time)	From	dynamic	class,	determine	method	to	invoke	

1.  Execute	method	with	the	same	signature	found	in	step	2	(from	dynamic	
class	or	one	of	its	supertypes)	

13 17-214

Use	polymorphism	to	avoid	instanceof	
public	interface	Account	{	
				…	
				public	long	getMonthlyAdjustment();	
}	
	
public	class	CheckingAccount	implements	Account	{	
				…	
				public	long	getMonthlyAdjustment()	{	
								return	getFee();	
				}	
}	
	
public	class	SavingsAccount	implements	Account	{	
				…	
				public	long	getMonthlyAdjustment()	{	
								return	getInterest();	
				}	
}	
	
	
	

14 17-214

Use	polymorphism	to	avoid	instanceof	

public	void	doSomething(Account	acct)	{	
		long	adj	=	0;	
		if	(acct	instanceof	CheckingAccount)	{	
				checkingAcct	=	(CheckingAccount)	acct;	
			adj	=	checkingAcct.getFee();	

		}	else	if	(acct	instanceof	SavingsAccount)	{	
				savingsAcct	=	(SavingsAccount)	acct;	
			adj	=	savingsAcct.getInterest();	

		}	
		…	
}	

Instead:	
 public	void	doSomething(Account	acct)	{	
		long	adj	=	acct.getMonthlyAdjustment();	
		…	
}	

15 17-214

Today	

•  UML	class	diagrams	
•  Introduction	to	design	patterns	

–  Strategy	pattern	
–  Command	pattern	

•  Design	patterns	for	reuse:	
–  Template	method	pattern	
–  Iterator	pattern	(probably	next	week)	
–  Decorator	pattern	(next	week)	

16 17-214

Religious	debates…	

"Democracy	is	the	worst	form	of	government,	
except	for	all	the	others…"				

	--	(allegedly)	Winston	Churchill	

17 17-214

UML:		Unified	Modeling	Language	

18 17-214

UML:		Unified	Modeling	Language	

19 17-214

UML:		Unified	Modeling	Language	

20 17-214

UML:		Unified	Modeling	Language	

21 17-214

UML	in	this	course	

•  UML	class	diagrams	
•  UML	interaction	diagrams	

–  Sequence	diagrams	

22 17-214

UML	class	diagrams		(interfaces	and	inheritance)	

public	interface	Account	{	
				public	long	getBalance();	
				public	void		deposit(long	amount);	
				public	boolean	withdraw(long	amount);	
				public	boolean	transfer(long	amount,	Account	target);	
				public	void	monthlyAdjustment();	
}	

public	interface	CheckingAccount	extends	Account	{	
				public	long	getFee();	
}	

public	interface	SavingsAccount	extends	Account	{	
				public	double	getInterestRate();	
}	

public	interface	InterestCheckingAccount		
																						extends	CheckingAccount,	SavingsAccount	{	
}	

23 17-214

public	abstract	class	AbstractAccount	
	 	implements	Account	{	
	protected	long	balance	=	0;	
	public	long	getBalance()	{	
	 	return	balance;	
	}	
	abstract	public	void	monthlyAdjustment();	
	//	other	methods…	

}	
	
public	class	CheckingAccountImpl	
	 	extends	AbstractAccount	
	 	implements	CheckingAccount	{	
	public	void	monthlyAdjustment()	{	
	 	balance	-=	getFee();	
	}	
	public	long	getFee()	{	…	}	

}	

UML	class	diagrams		(classes)	

24 17-214

UML	you	should	know	

•  Interfaces	vs.	classes	
•  Fields	vs.	methods	
•  Relationships:			

–  "extends"	(inheritance)	
–  "implements"	(realization)	
–  "has	a"	(aggregation)	
–  non-specific	association	

•  Visibility:					+	(public)					-	(private)						#	(protected)	
•  Basic	best	practices…	

25 17-214

•  Best	used	to	show	the	big	picture	
–  Omit	unimportant	details	

•  But	show	they	are	there:		…	
•  Avoid	redundancy	

–  e.g.,	bad:	

			good:	

UML	advice	

26 17-214

Today	

•  UML	class	diagrams	
•  Introduction	to	design	patterns	

–  Strategy	pattern	
–  Command	pattern	

•  Design	patterns	for	reuse:	
–  Template	method	pattern	
–  Iterator	pattern	
–  Decorator	pattern	(next	week)	

27 17-214

One	design	scenario	

•  Amazon.com	processes	millions	of	orders	each	year,	selling	in	75	
countries,	all	50	states,	and	thousands	of	cities	worldwide.		
These	countries,	states,	and	cities	have	hundreds	of	distinct	
sales	tax	policies	and,	for	any	order	and	destination,	
Amazon.com	must	be	able	to	compute	the	correct	sales	tax	for	
the	order	and	destination.	

28 17-214

Another	design	scenario	

•  A	vision	processing	system	must	detect	lines	in	an	image.		For	
different	applications	the	line	detection	requirements	vary.		E.g.,	
for	a	vision	system	in	a	driverless	car	the	system	must	process	30	
images	per	second,	but	it's	OK	to	miss	some	lines	in	some	
images.		A	face	recognition	system	can	spend	3-5	seconds	
analyzing	an	image,	but	requires	accurate	detection	of	subtle	
lines	on	a	face.	

29 17-214

A	third	design	scenario	

•  Suppose	we	need	to	sort	a	list	in	different	orders…	

interface	Order	{	
		boolean	lessThan(int	i,	int	j);	
}	
	
final	Order	ASCENDING	=		(i,	j)	->	i	<	j;	
final	Order	DESCENDING	=	(i,	j)	->	i	>	j;	
	
static	void	sort(int[]	list,	Order	cmp)	{	
		…		
		boolean	mustSwap	=	
				cmp.lessThan(list[i],	list[j]);	
		…	
}	

30 17-214

Design	patterns	

“Each	pattern	describes	a	problem	
which	occurs	over	and	over	again	
in	our	environment,	and	then	
describes	the	core	of	the	solution	
to	that	problem,	in	such	a	way	
that	you	can	use	this	solution	a	
million	times	over,	without	ever	
doing	it	the	same	way	twice”	
			–	Christopher	Alexander,	
							Architect	(1977)	

31 17-214

How	not	to	discuss	design	(from	Shalloway	and	Trott)	

•  Carpentry:	
–  How	do	you	think	we	should	build	these	drawers?	
–  Well,	I	think	we	should	make	the	joint	by	cutting	straight	down	into	the	

wood,	and	then	cut	back	up	45	degrees,	and	then	going	straight	back	
down,	and	then	back	up	the	other	way	45	degrees,	and	then	going	
straight	down,	and	repeating…	

32 17-214

How	not	to	discuss	design	(from	Shalloway	and	Trott)	

•  Carpentry:	
–  How	do	you	think	we	should	build	these	drawers?	
–  Well,	I	think	we	should	make	the	joint	by	cutting	straight	down	into	the	

wood,	and	then	cut	back	up	45	degrees,	and	then	going	straight	back	
down,	and	then	back	up	the	other	way	45	degrees,	and	then	going	
straight	down,	and	repeating…	

•  Software	Engineering:	
–  How	do	you	think	we	should	write	this	method?	
–  I	think	we	should	write	this	if	statement	to	handle	…	followed	by	a	while	

loop	…	with	a	break	statement	so	that…	

33 17-214

Discussion	with	design	patterns	

•  Carpentry:	
–  "Is	a	dovetail	joint	or	a	miter	joint	better	here?"	

•  Software	Engineering:	
–  "Is	a	strategy	pattern	or	a	template	method	better	here?"	

	

	

34 17-214

History:	Design	Patterns	(1994)	

35 17-214

Elements	of	a	design	pattern	

•  Name	
•  Abstract	description	of	problem	
•  Abstract	description	of	solution	
•  Analysis	of	consequences	

36 17-214

Strategy	pattern	

•  Problem:		Clients	need	different	variants	of	an	algorithm	
•  Solution:		Create	an	interface	for	the	algorithm,	with	an	

implementing	class	for	each	variant	of	the	algorithm	
•  Consequences:	

–  Easily	extensible	for	new	algorithm	implementations	
–  Separates	algorithm	from	client	context	
–  Introduces	an	extra	interface	and	many	classes:	

•  Code	can	be	harder	to	understand	
•  Lots	of	overhead	if	the	strategies	are	simple	

37 17-214

Patterns	are	more	than	just	structure	

•  Consider:		A	modern	car	engine	is	constantly	monitored	by	a	
software	system.		The	monitoring	system	must	obtain	data	from	
many	distinct	engine	sensors,	such	as	an	oil	temperature	sensor,	
an	oxygen	sensor,	etc.		More	sensors	may	be	added	in	the	
future.	

38 17-214

Different	patterns	can	have	the	same	structure	

Command	pattern:	
•  Problem:		Clients	need	to	execute	some	(possibly	flexible)	

operation	without	knowing	the	details	of	the	operation	
•  Solution:		Create	an	interface	for	the	operation,	with	a	class	(or	

classes)	that	actually	executes	the	operation	
•  Consequences:	

–  Separates	operation	from	client	context	
–  Can	specify,	queue,	and	execute	commands	at	different	times	
–  Introduces	an	extra	interface	and	classes:	

•  Code	can	be	harder	to	understand	
•  Lots	of	overhead	if	the	commands	are	simple	

39 17-214

Design	pattern	conclusions	

•  Provide	shared	language	
•  Convey	shared	experience	
•  Can	be	system	and	language	specific	

40 17-214

Today	

•  UML	class	diagrams	
•  Introduction	to	design	patterns	

–  Strategy	pattern	
–  Command	pattern	

•  Design	patterns	for	reuse:	
–  Template	method	pattern	
–  Iterator	pattern	
–  Decorator	pattern	(next	week)	

41 17-214

One	design	scenario	

•  A	GUI-based	document	editor	works	with	multiple	document	
formats.		Some	parts	of	the	algorithm	to	load	a	document	(e.g.,	
reading	a	file,	rendering	to	the	screen)	are	the	same	for	all	
document	formats,	and	other	parts	of	the	algorithm	vary	from	
format-to-format	(e.g.	parsing	the	file	input).	

42 17-214

Another	design	scenario	

•  Several	versions	of	a	domain-specific	machine	learning	algorithm	
are	being	implemented	to	use	data	stored	in	several	different	
database	systems.		The	basic	algorithm	for	all	versions	is	the	
same;	just	the	interactions	with	the	database	are	different	from	
version	to	version.	

43 17-214

The	abstract	java.util.AbstractList<E>	

		abstract	T			get(int	i);														
		abstract	int	size();																		
		boolean						set(int	i,	E	e);									//	pseudo-abstract	
		boolean						add(E	e);																//	pseudo-abstract																
		boolean						remove(E	e);													//	pseudo-abstract	
		boolean						addAll(Collection<?	extends	E>	c);	
		boolean						removeAll(Collection<?>	c);	
		boolean						retainAll(Collection<?>	c);	
		boolean						contains(E	e);	
		boolean						containsAll(Collection<?>	c);	
		void									clear();	
		boolean						isEmpty();	
		abstract	Iterator<E>		iterator();	
		Object[]					toArray()	
		<T>	T[]						toArray(T[]	a);	
		…	
	

44 17-214

Template	method	pattern	

•  Problem:		An	algorithm	consists	of	customizable	parts	and	
invariant	parts	

•  Solution:		Implement	the	invariant	parts	of	the	algorithm	in	an	
abstract	class,	with	abstract	(unimplemented)	primitive	
operations	representing	the	customizable	parts	of	the	algorithm.		
Subclasses	customize	the	primitive	operations	

•  Consequences	
–  Code	reuse	for	the	invariant	parts	of	algorithm	
–  Customization	is	restricted	to	the	primitive	operations	
–  Inverted	(Hollywood-style)	control	for	customization	

45 17-214

Template	method	vs.	the	strategy	pattern	

•  Template	method	uses	inheritance	to	vary	part	of	an	algorithm	
–  Template	method	implemented	in	supertype,	primitive	operations	

implemented	in	subtypes	

•  Strategy	pattern	uses	delegation	to	vary	the	entire	algorithm	
–  Strategy	objects	are	reusable	across	multiple	classes	
–  Multiple	strategy	objects	are	possible	per	class	

46 17-214

Summary	

•  Use	UML	class	diagrams	to	simplify	communication	
•  Design	patterns…	

–  Convey	shared	experience,	general	solutions	
–  Facilitate	communication	

•  Specific	design	patterns	for	reuse:	
–  Strategy	
–  Template	method	
–  Iterator	

	06-design-patterns-for-reuse
	design-pattern-intro-paper-slides
	20190912-introduction-to-design-patterns
	20190917-design-patterns-continued

