
1 17-214

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Designing	classes	
	
Design	patterns	for	reuse,	part	2	
	
Josh	Bloch 	 	Charlie	Garrod	

2 17-214

Administrivia	

•  Reading	due	today:		UML	and	Patterns	Chapters	9	and	10	
•  Optional	reading	for	Thursday:	
•  UML	and	Patterns	Chapter	17	
•  Effective	Java	items	49,	54,	and	69	

•  Homework	3	due	Sunday	at	11:59	p.m.	
•  Midterm	exam	next	Thursday	(February	13th)	

–  Review	session	Wednesday,	February	12th	6-8	pm,	DH	A302	
–  Practice	exam	coming	this	weekend	

3 17-214

Key	concepts	from	last	Thursday	

4 17-214

UML	you	should	know	

•  Interfaces	vs.	classes	
•  Fields	vs.	methods	
•  Relationships:			

–  "extends"	(inheritance)	
–  "implements"	(realization)	
–  "has	a"	(aggregation)	
–  non-specific	association	

•  Visibility:					+	(public)					-	(private)						#	(protected)	
•  Basic	best	practices…	

5 17-214

Design	patterns	

•  Carpentry:	
–  "Is	a	dovetail	joint	or	a	miter	joint	better	here?"	

•  Software	Engineering:	
–  "Is	a	strategy	pattern	or	a	template	method	better	here?"	

	

	

6 17-214

Elements	of	a	design	pattern	

•  Name	
•  Abstract	description	of	problem	
•  Abstract	description	of	solution	
•  Analysis	of	consequences	

7 17-214

Strategy	pattern	

•  Problem:		Clients	need	different	variants	of	an	algorithm	
•  Solution:		Create	an	interface	for	the	algorithm,	with	an	

implementing	class	for	each	variant	of	the	algorithm	
•  Consequences:	

–  Easily	extensible	for	new	algorithm	implementations	
–  Separates	algorithm	from	client	context	
–  Introduces	an	extra	interface	and	many	classes:	

•  Code	can	be	harder	to	understand	
•  Lots	of	overhead	if	the	strategies	are	simple	

8 17-214

Different	patterns	can	have	the	same	structure	

Command	pattern:	
•  Problem:		Clients	need	to	execute	some	(possibly	flexible)	

operation	without	knowing	the	details	of	the	operation	
•  Solution:		Create	an	interface	for	the	operation,	with	a	class	(or	

classes)	that	actually	executes	the	operation	
•  Consequences:	

–  Separates	operation	from	client	context	
–  Can	specify,	queue,	and	execute	commands	at	different	times	
–  Introduces	an	extra	interface	and	classes:	

•  Code	can	be	harder	to	understand	
•  Lots	of	overhead	if	the	commands	are	simple	

9 17-214

Template	method	pattern	

•  Problem:		An	algorithm	consists	of	customizable	parts	and	
invariant	parts	

•  Solution:		Implement	the	invariant	parts	of	the	algorithm	in	an	
abstract	class,	with	abstract	(unimplemented)	primitive	
operations	representing	the	customizable	parts	of	the	algorithm.		
Subclasses	customize	the	primitive	operations	

•  Consequences	
–  Code	reuse	for	the	invariant	parts	of	algorithm	
–  Customization	is	restricted	to	the	primitive	operations	
–  Inverted	(Hollywood-style)	control	for	customization	

10 17-214

Template	method	vs.	the	strategy	pattern	

•  Template	method	uses	inheritance	to	vary	part	of	an	algorithm	
–  Template	method	implemented	in	supertype,	primitive	operations	

implemented	in	subtypes	

•  Strategy	pattern	uses	delegation	to	vary	the	entire	algorithm	
–  Strategy	objects	are	reusable	across	multiple	classes	
–  Multiple	strategy	objects	are	possible	per	class	

11 17-214

Today	

•  More	design	patterns	for	reuse	
–  Iterator	pattern	
–  Decorator	pattern	

•  Design	goals	and	design	principles	

12 17-214

Traversing	a	collection	

•  Since	Java	1.0:	
		Vector	arguments	=	…;	
		for	(int	i	=	0;	i	<	arguments.size();	++i)	{	
				System.out.println(arguments.get(i));	
		}	

•  Java	1.5:		enhanced	for	loop	
		List<String>	arguments	=	…;	
		for	(String	s	:	arguments)	{	
				System.out.println(s);	
		}	

•  For-each	loop	works	for	every	implementation	of	Iterable	
		public	interface	Iterable<E>	{	
				public	Iterator<E>	iterator();	
		}	

13 17-214

The	Iterator	interface	

public	interface	java.util.Iterator<E>	{	
		boolean	hasNext();	
		E	next();	
		void	remove();		//	removes	previous	returned	item	
}																	//	from	the	underlying	collection	

•  To	use	explicitly,	e.g.:	
List<String>	arguments	=	…;			
for	(Iterator<String>	it	=	arguments.iterator();	
					it.hasNext();)	{	
		String	s	=	it.next();	
		System.out.println(s);	
}	

14 17-214

Getting	an	Iterator	

public	interface	Collection<E>	extends	Iterable<E>	{			
		boolean					add(E	e);	
		boolean					addAll(Collection<?	extends	E>	c);	
		boolean					remove(Object	e);	
		boolean					removeAll(Collection<?>	c);	
		boolean					retainAll(Collection<?>	c);	
		boolean					contains(Object	e);	
		boolean					containsAll(Collection<?>	c);	
		void								clear();	
		int									size();	
		boolean					isEmpty();	
		Iterator<E>	iterator();	
		Object[]				toArray()	
		<T>	T[]					toArray(T[]	a);	
		…	
}	

Defines an interface for
creating an Iterator,
but allows Collection
implementation to decide
which Iterator to create.

15 17-214

public	class	Pair<E>	{	
		private	final	E	first,	second;	
		public	Pair(E	f,	E	s)	{	first	=	f;	second	=	s;	}	
	
	
	
			
	
	
	
	
	
	
	
	
	
	
}	
	

An	Iterator	implementation	for	Pairs	

Pair<String>	pair	=	new	Pair<String>("foo",	"bar");	
for	(String	s	:	pair)	{	…	}	

16 17-214

public	class	Pair<E>	implements	Iterable<E>	{	
		private	final	E	first,	second;	
		public	Pair(E	f,	E	s)	{	first	=	f;	second	=	s;	}	
		public	Iterator<E>	iterator()	{	
				return	new	PairIterator();	
		}	
		private	class	PairIterator	implements	Iterator<E>	{	
				private	boolean	seenFirst	=	false,	seenSecond	=	false;	
				public		boolean	hasNext()	{	return	!seenSecond;	}	
				public		E	next()	{	
						if	(!seenFirst)		{	seenFirst		=	true;	return	first;		}	
						if	(!seenSecond)	{	seenSecond	=	true;	return	second;	}	
						throw	new	NoSuchElementException();	
				}	
				public	void	remove()	{		
						throw	new	UnsupportedOperationException();	
				}	
		}	
}	
	

An	Iterator	implementation	for	Pairs	

Pair<String>	pair	=	new	Pair<String>("foo",	"bar");	
for	(String	s	:	pair)	{	…	}	

17 17-214

Iterator	design	pattern	

•  Problem:		Clients	need	uniform	strategy	to	access	all	elements	in	
a	container,	independent	of	the	container	type	
–  Order	is	unspecified,	but	access	every	element	once	

•  Solution:		A	strategy	pattern	for	iteration		
•  Consequences:	

–  Hides	internal	implementation	of	underlying	container	
–  Easy	to	change	container	type	
–  Facilitates	communication	between	parts	of	the	program	

18 17-214

Using	a	java.util.Iterator<E>:		A	warning	

•  The	default	Collections	implementations	are	mutable…	
•  …but	their	Iterator	implementations	assume	the	collection	

does	not	change	while	the	Iterator	is	being	used	
–  You	will	get	a	ConcurrentModificationException	

19 17-214

Using	a	java.util.Iterator<E>:		A	warning	

•  The	default	Collections	implementations	are	mutable…	
•  …but	their	Iterator	implementations	assume	the	collection	

does	not	change	while	the	Iterator	is	being	used	
–  You	will	get	a	ConcurrentModificationException	
–  If you simply want to remove an item:
 List<String>	arguments	=	…;			
			for	(Iterator<String>	it	=	arguments.iterator();	
								it.hasNext();)	{	
					String	s	=	it.next();	
					if	(s.equals("Charlie"))		
							arguments.remove("Charlie");	//	runtime	error	
			}	

20 17-214

Using	a	java.util.Iterator<E>:		A	warning	

•  The	default	Collections	implementations	are	mutable…	
•  …but	their	Iterator	implementations	assume	the	collection	

does	not	change	while	the	Iterator	is	being	used	
–  You	will	get	a	ConcurrentModificationException	
–  If you simply want to remove an item:
 List<String>	arguments	=	…;			
			for	(Iterator<String>	it	=	arguments.iterator();	
								it.hasNext();)	{	
					String	s	=	it.next();	
					if	(s.equals("Charlie"))		
							it.remove();	
			}	

21 17-214

Today	

•  More	design	patterns	for	reuse	
–  Iterator	pattern	
–  Decorator	pattern	

•  Design	goals	and	design	principles	

22 17-214

Limitations	of	inheritance	

•  Suppose	you	want	various	extensions	of	a	Stack	data	structure…	
–  UndoStack:		A	stack	that	lets	you	undo	previous	push	or	pop	operations	
–  SecureStack:		A	stack	that	requires	a	password	
–  SynchronizedStack:		A	stack	that	serializes	concurrent	accesses	

23 17-214

Limitations	of	inheritance	

•  Suppose	you	want	various	extensions	of	a	Stack	data	structure…	
–  UndoStack:		A	stack	that	lets	you	undo	previous	push	or	pop	operations	
–  SecureStack:		A	stack	that	requires	a	password	
–  SynchronizedStack:		A	stack	that	serializes	concurrent	accesses	
–  SecureUndoStack:		A	stack	that	requires	a	password,	and	also	lets	you	

undo	previous	operations	
–  SynchronizedUndoStack:		A	stack	that	serializes	concurrent	accesses,	

and	also	lets	you	undo	previous	operations	
–  SecureSynchronizedStack:	…	
–  SecureSynchronizedUndoStack:	…	

Goal: arbitrarily composable extensions

24 17-214

Limitations	of	inheritance	

25 17-214

Workarounds?	

•  Combining	inheritance	hierarchies?	
•  Multiple	inheritance?	

26 17-214

The	decorator	design	pattern	

•  Problem:		You	need	arbitrary	or	dynamically	composable	
extensions	to	individual	objects.	

•  Solution:		Implement	a	common	interface	as	the	object	you	are	
extending,	add	functionality,	but	delegate	primary	responsibility	
to	an	underlying	object.	

•  Consequences:	
–  More	flexible	than	static	inheritance	
–  Customizable,	cohesive	extensions	
–  Breaks	object	identity,	self-references	

27 17-214

Decorators	use	both	subtyping	and	delegation	

public	class	LoggingList<E>	implements	List<E>	{	
		private	final	List<E>	list;	
		public	LoggingList<E>(List<E>	list)	{	this.list	=	list;	}	
		public	boolean	add(E	e)	{	
						System.out.println("Adding	"	+	e);	
						return	list.add(e);	
		}	
		public	E	remove(int	index)	{	
						System.out.println("Removing	at	"	+	index);	
						return	list.remove(index);	
		}	
		…	

28 17-214

An	AbstractStackDecorator	forwarding	class	

public	abstract	class	AbstractStackDecorator		
											implements	Stack	{	
		private	final	Stack	stack;	
		public	AbstractStackDecorator(Stack	stack)	{		
						this.stack	=	stack;	
		}	
		public	void	push(Item	e)	{	

	stack.push(e);	
		}	
		public	Item	pop()	{	

	return	stack.pop();	
		}	
		…	
}	

29 17-214

Concrete	decorator	classes	

public	class	UndoStack	extends	AbstractStackDecorator	
	implements	Stack	{	

		private	final	UndoLog	log	=	new	UndoLog();	
		public	UndoStack(Stack	stack)	{	super(stack);	}	
		public	void	push(Item	e)	{	

	log.append(UndoLog.PUSH,	e);	
	super.push(e);	

		}	
		…	
}	

30 17-214

Using	the	decorator	classes	

•  To	construct	a	plain	stack:	
Stack	stack	=	new	ArrayStack();	

•  To	construct	an	undo	stack:	

31 17-214

Using	the	decorator	classes	

•  To	construct	a	plain	stack:	
Stack	stack	=	new	ArrayStack();	

•  To	construct	an	undo	stack:	
UndoStack	stack	=	new	UndoStack(new	ArrayStack());	

32 17-214

Using	the	decorator	classes	

•  To	construct	a	plain	stack:	
Stack	stack	=	new	ArrayStack();	

•  To	construct	an	undo	stack:	
UndoStack	stack	=	new	UndoStack(new	ArrayStack());	

•  To	construct	a	secure	synchronized	undo	stack:	

33 17-214

Using	the	decorator	classes	

•  To	construct	a	plain	stack:	
Stack	s	=	new	ArrayStack();	

•  To	construct	an	undo	stack:	
UndoStack	s	=	new	UndoStack(new	ArrayStack());	

•  To	construct	a	secure	synchronized	undo	stack:	
SecureStack	s	=	new	SecureStack(new	SynchronizedStack(

	 	 	new	UndoStack(new	ArrayStack())));	

34 17-214

Decorators	from	java.util.Collections	

•  Turn	a	mutable	collection	into	an	immutable	collection:	
		static	List<T>		unmodifiableList(List<T>		lst);	
		static	Set<T>			unmodifiableSet(Set<T>			set);	
		static	Map<K,V>	unmodifiableMap(Map<K,V>	map);	

•  Similar	for	synchronization:	
		static	List<T>		synchronizedList(List<T>		lst);	
		static	Set<T>			synchronizedSet(Set<T>			set);	
		static	Map<K,V>	synchronizedMap(Map<K,V>	map);	

35 17-214

The	UnmodifiableCollection	(simplified	excerpt)	

public	static	<T>	Collection<T>	unmodifiableCollection(Collection<T>	c)	{		
	return	new	UnmodifiableCollection<>(c);		

}		
class	UnmodifiableCollection<E>	implements	Collection<E>,	Serializable	{		

	final	Collection<E>	c;		
	UnmodifiableCollection(Collection<>	c)	{this.c	=	c;	}		
	public	int	size()	{return	c.size();}		
	public	boolean	isEmpty()	{return	c.isEmpty();}		
	public	boolean	contains(Object	o)	{return	c.contains(o);}		
	public	Object[]	toArray()	{return	c.toArray();}		
	public	<T>	T[]	toArray(T[]	a)	{return	c.toArray(a);}		
	public	String	toString()	{return	c.toString();}	
	public	boolean	add(E	e)	{throw	new	UnsupportedOperationException();			}		
	public	boolean	remove(Object	o)	{	throw	new	UnsupportedOperationException();			}		

				 	public	boolean	containsAll(Collection<?>	coll)	{		return	c.containsAll(coll);			}		
	public	boolean	addAll(Collection<?	extends	E>	coll)	{	throw	new	UnsupportedOperationException();			}		
	public	boolean	removeAll(Collection<?>	coll)	{	throw	new	UnsupportedOperationException();			}		
	public	boolean	retainAll(Collection<?>	coll)	{	throw	new	UnsupportedOperationException();			}		
	public	void	clear()	{		throw	new	UnsupportedOperationException();			}		

}	

36 17-214

The	decorator	pattern	vs.	inheritance	

•  Decorator	composes	features	at	run	time	
–  Inheritance	composes	features	at	compile	time	

•  Decorator	consists	of	multiple	collaborating	objects	
–  Inheritance	produces	a	single,	clearly-typed	object	

•  Can	mix	and	match	multiple	decorations	
–  Multiple	inheritance	is	conceptually	difficult	

37 17-214

Today	

•  More	design	patterns	for	reuse	
–  Iterator	pattern	
–  Decorator	pattern	

•  Design	goals	and	design	principles	

38 17-214

Metrics	of	software	quality,	i.e.,	design	goals	

Functional	
correctness	 Adherence	of	implementation	to	the	specifications	

Robustness	 Ability	to	handle	anomalous	events	

Flexibility	 Ability	to	accommodate	changes	in	specifications	

Reusability	 Ability	to	be	reused	in	another	application	

Efficiency	 Satisfaction	of	speed	and	storage	requirements	

Scalability	 Ability	to	serve	as	the	basis	of	a	larger	version	of	the	application	

Security	 Level	of	consideration	of	application	security	

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

39 17-214

Design	principles:	heuristics	to	achieve	design	goals	

•  Low	coupling	
•  Low	representational	gap	
•  High	cohesion	

40 17-214

A	design	principle	for	reuse:		low	coupling	

•  Each	component	should	depend	on	as	few	other	components	as	
possible	

•  Benefits	of	low	coupling:	
–  Enhances	understandability	
–  Reduces	cost	of	change	
–  Eases	reuse	

41 17-214

Law	of	Demeter	

•  "Only	talk	to	your	immediate	friends"	

foo.bar().baz().quz(42)	

42 17-214

Representational	gap	

•  Real-world	concepts:	

•  Software	concepts:	

?	
…	

…	

?	
…	

…	
…	

43 17-214

Representational	gap	

•  Real-world	concepts:	

•  Software	concepts:	

Obj1	
a	
h	

k()	

Obj2	
objs	

…	

Actor42	
…	

op12	

44 17-214

Representational	gap	

•  Real-world	concepts:	

•  Software	concepts:	

PineTree	
age	
height	

harvest()	

Forest	
-trees		

…	

Ranger	
…	

surveyForest(…)	

45 17-214

Benefits	of	low	representational	gap	

•  Facilitates	understanding	of	design	and	implementation	
•  Facilitates	traceability	from	problem	to	solution	
•  Facilitates	evolution	

46 17-214

A	related	design	principle:		high	cohesion	

•  Each	component	should	have	a	small	set	of	closely-related	
responsibilities	

•  Benefits:	
–  Facilitates	understandability	
–  Facilitates	reuse	
–  Eases	maintenance	

PineTree	
age	
height	

harvest()	

Forest	
-trees		

…	

Ranger	
…	

surveyForest(…)	

47 17-214

Coupling	vs.	cohesion	

•  All	code	in	one	component?	
–  Low	cohesion,	low	coupling	

•  Every	statement	/	method	in	a	separate	component?	
–  High	cohesion,	high	coupling	

48 17-214

Summary	

•  Five	design	patterns	to	facilitate	reuse…	
•  Design	principles	are	useful	heuristics	

–  Reduce	coupling	to	increase	understandability,	reuse	
–  Lower	representational	gap	to	increase	understandability,	maintainability	
–  Increase	cohesion	to	increase	understandability	

	20200204-design-patterns-for-reuse-2
	decorator-paper-slides

