
1 17-214

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Designing	classes	
	
A	formal	design	process:		Domain	modeling	
	
Josh	Bloch 	 	Charlie	Garrod	

2 17-214

Administrivia	

•  Homework	3	due	Sunday	at	11:59	p.m.	
•  Optional	reading	for	today:	

•  UML	and	Patterns	Chapter	17	
•  Effective	Java	items	49,	54,	and	69	

–  Required	reading	due	Tuesday:	
•  UML	and	Patterns	Chapters	14,	15,	and	16	

•  Midterm	exam	next	Thursday	(February	13th)	
–  Review	session	Wednesday,	February	12th	6-8	pm,	DH	A302	
–  Practice	exam	coming	this	weekend	

3 17-214

Key	concepts	from	Tuesday	

4 17-214

Key	concepts	from	Tuesday	

•  More	design	patterns	for	reuse	
–  Template	method	pattern	
–  Iterator	pattern	
–  Decorator	pattern	

•  Design	principles:	heuristics	to	achieve	design	goals	

5 17-214

A	design	principle	for	reuse:		low	coupling	

•  Each	component	should	depend	on	as	few	other	components	as	
possible	

	
	
	
	
	

•  Benefits	of	low	coupling:	
–  Enhances	understandability	
–  Reduces	cost	of	change	
–  Eases	reuse	

6 17-214

Representational	gap	

•  Real-world	concepts:	
	
	
	
	
	
	

•  Software	concepts:	

PineTree	
age
height

harvest()	

Forest
-trees	

…

Ranger
…

surveyForest(…)

7 17-214

A	related	design	principle:		high	cohesion	

•  Each	component	should	have	a	small	set	of	closely-related	
responsibilities	

•  Benefits:	
–  Facilitates	understandability	
–  Facilitates	reuse	
–  Eases	maintenance	

PineTree	
age
height

harvest()	

Forest
-trees	

…

Ranger
…

surveyForest(…)

8 17-214

Problem

Space

Domain Model

Solution
Space

Object Model

Our path toward a more formal design process

•  Real-world	concepts	
•  Requirements,	concepts	
•  Relationships	among	concepts	
•  Solving	a	problem	
•  Building	a	vocabulary	

•  System	implementation	
•  Classes,	objects	
•  References	among	objects	and	

inheritance	hierarchies	
•  Computing	a	result	
•  Finding	a	solution	

9 17-214

Today		

•  Interaction	diagrams:		to	visualize	dynamic	behavior	
•  Understanding	a	design	problem:		Object-oriented	analysis	

10 17-214

Visualizing	dynamic	behavior:		Interaction	diagrams	

•  An	interaction	diagram	is	a	picture	that	shows,	for	a	single	
scenario	of	use,	the	events	that	occur	across	the	system’s	
boundary	or	between	subsystems	

•  Clarifies	interactions:	
–  Between	the	program	and	its	environment	
–  Between	major	parts	of	the	program	

•  For	this	course,	you	should	know	UML	sequence	diagrams	

11 17-214

Constructing	a	sequence	diagram	

12 17-214

An	example	sequence	diagram	

13 17-214

(Sequence	diagram	with	notation	annotations)	

14 17-214

Draw	a	sequence	diagram	for	a	call	to	LoggingList.add:	

public	class	LoggingList<E>	implements	List<E>	{	
		private	final	List<E>	list;	
		public	LoggingList<E>(List<E>	list)	{	this.list	=	list;	}	
		public	boolean	add(E	e)	{	
						System.out.println("Adding	"	+	e);	
						return	list.add(e);	
		}	
		public	E	remove(int	index)	{	
						System.out.println("Removing	at	"	+	index);	
						return	list.remove(index);	
		}	
		…	

15 17-214

Today		

•  Interaction	diagrams:		to	visualize	dynamic	behavior	
•  Understanding	a	design	problem:		Object-oriented	analysis	

16 17-214

A	high-level	software	design	process	

•  Project	inception	
•  Gather	requirements	
•  Define	actors,	and	use	cases	
•  Model	/	diagram	the	problem,	define	objects	
•  Define	system	behaviors	
•  Assign	object	responsibilities	
•  Define	object	interactions	
•  Model	/	diagram	a	potential	solution	
•  Implement	and	test	the	solution	
•  Maintenance,	evolution,	…	

17-313	

17-214	

…	

17 17-214

Artifacts	of	this	design	process	

•  Model	/	diagram	the	problem,	define	objects	
–  Domain	model		(a.k.a.	conceptual	model)	

•  Define	system	behaviors	
–  System	sequence	diagram	
–  System	behavioral	contracts	

•  Assign	object	responsibilities,	define	interactions	
–  Object	interaction	diagrams	

•  Model	/	diagram	a	potential	solution	
–  Object	model	

18 17-214

Artifacts	of	this	design	process	

•  Model	/	diagram	the	problem,	define	objects	
–  Domain	model		(a.k.a.	conceptual	model)	

•  Define	system	behaviors	
–  System	sequence	diagram	
–  System	behavioral	contracts	

•  Assign	object	responsibilities,	define	interactions	
–  Object	interaction	diagrams	

•  Model	/	diagram	a	potential	solution	
–  Object	model	

Today:		
understanding	
the	problem	

Defining	a	
solution	

19 17-214

Input	to	the	design	process:		Requirements	and	use	cases	

•  Typically	prose:	

20 17-214

Modeling	a	problem	domain	

•  Identify	key	concepts	of	the	domain	description	
–  Identify	nouns,	verbs,	and	relationships	between	concepts	
–  Avoid	non-specific	vocabulary,	e.g.	"system"	
–  Distinguish	operations	and	concepts	
–  Brainstorm	with	a	domain	expert	

21 17-214

Modeling	a	problem	domain	

•  Identify	key	concepts	of	the	domain	description	
–  Identify	nouns,	verbs,	and	relationships	between	concepts	
–  Avoid	non-specific	vocabulary,	e.g.	"system"	
–  Distinguish	operations	and	concepts	
–  Brainstorm	with	a	domain	expert	

•  Visualize	as	a	UML	class	diagram,	a	domain	model	
–  Show	class	and	attribute	concepts	

•  Real-world	concepts	only	
•  No	operations/methods	
•  Distinguish	class	concepts	from	attribute	concepts	

–  Show	relationships	and	cardinalities	

22 17-214

Building	a	domain	model	for	a	library	system	

A	public	library	typically	stores	a	collection	of	books,	movies,	or	other	library	
items	available	to	be	borrowed	by	people	living	in	a	community.		Each	library	
member	typically	has	a	library	account	and	a	library	card	with	the	account’s	ID	
number,	which	she	can	use	to	identify	herself	to	the	library.			
	
A	member’s	library	account	records	which	items	the	member	has	borrowed	and	
the	due	date	for	each	borrowed	item.		Each	type	of	item	has	a	default	rental	
period,	which	determines	the	item’s	due	date	when	the	item	is	borrowed.		If	a	
member	returns	an	item	after	the	item’s	due	date,	the	member	owes	a	late	fee	
specific	for	that	item,	an	amount	of	money	recorded	in	the	member’s	library	
account.	

23 17-214

Building	a	domain	model	for	a	library	system	

A	public	library	typically	stores	a	collection	of	books,	movies,	or	other	library	
items	available	to	be	borrowed	by	people	living	in	a	community.		Each	library	
member	typically	has	a	library	account	and	a	library	card	with	the	account’s	ID	
number,	which	she	can	use	to	identify	herself	to	the	library.			
	
A	member’s	library	account	records	which	items	the	member	has	borrowed	and	
the	due	date	for	each	borrowed	item.		Each	type	of	item	has	a	default	rental	
period,	which	determines	the	item’s	due	date	when	the	item	is	borrowed.		If	a	
member	returns	an	item	after	the	item’s	due	date,	the	member	owes	a	late	fee	
specific	for	that	item,	an	amount	of	money	recorded	in	the	member’s	library	
account.	

24 17-214

One	domain	model	for	the	library	system	

25 17-214

Notes	on	the	library	domain	model	

•  All	concepts	are	accessible	to	a	non-programmer	
•  The	UML	is	somewhat	informal	

–  Relationships	are	often	described	with	words	
•  Real-world	"is-a"	relationships	are	appropriate	for	a	domain	model	
•  Real-word	abstractions	are	appropriate	for	a	domain	model	
•  Iteration	is	important	

–  This	example	is	a	first	draft.		Some	terms	(e.g.	Item	vs.	LibraryItem,	Account	
vs.	LibraryAccount)	would	likely	be	revised	in	a	real	design.	

•  Aggregate	types	are	usually	modeled	as	classes	
•  Primitive	types	(numbers,	strings)	are	usually	modeled	as	attributes	

26 17-214

Build	a	domain	model	for	Homework	2	

27 17-214

Possible	domain	models	for	Homework	2	

28 17-214

Understanding	system	behavior	with	sequence	diagrams	

•  A	system	sequence	diagram	is	a	model	that	shows,	for	one	
scenario	of	use,	the	sequence	of	events	that	occur	on	the	
system’s	boundary	

•  Design	goal:	Identify	and	define	the	interface	of	the	system	
–  System-level	components	only:		e.g.,	A	user	and	the	overall	system	

29 17-214

Understanding	system	behavior	with	sequence	diagrams	

•  A	system	sequence	diagram	is	a	model	that	shows,	for	one	
scenario	of	use,	the	sequence	of	events	that	occur	on	the	
system’s	boundary	

•  Design	goal:	Identify	and	define	the	interface	of	the	system	
–  System-level	components	only:		e.g.,	A	user	and	the	overall	system	

•  Input:		Domain	description	and	one	use	case	
•  Output:		A	sequence	diagram	of	system-level	operations	

–  Include	only	domain-level	concepts	and	operations	

30 17-214

One	sequence	diagram	for	the	library	system	

Use	case	scenario:		A	library	member	should	be	able	to	use	her	library	card	to	log	
in	at	a	library	system	kiosk	and	borrow	a	book.		After	confirming	that	the	
member	has	no	unpaid	late	fees,	the	library	system	should	determine	the	book’s	
due	date	by	adding	its	rental	period	to	the	current	day,	and	record	the	book	and	
its	due	date	as	a	borrowed	item	in	the	member’s	library	account.	

31 17-214

Formalize	system	behavior	with	behavioral	contracts	

•  A	system	behavioral	contract	describes	the	pre-conditions	and	
post-conditions	for	some	operation	identified	in	the	system	
sequence	diagrams	
–  System-level	textual	specifications,	like	software	specifications	

32 17-214

A	system	behavioral	contract	for	the	library	system	

Operation:		 	borrow(item)	
	
Pre-conditions: 	Library	member	has	already	logged	in	to	the	system.	

	 	Item	is	not	currently	borrowed	by	another	member.	
	
Post-conditions: 	Logged-in	member's	account	records	the	newly-borrowed	 	

	 	item,	or	the	member	is	warned	she	has	an	outstanding	late	fee.	
	 	The	newly-borrowed	item	contains	a	future	due	date,	 	
	 	computed	as	the	item's	rental	period	plus	the	current	date.	

33 17-214

Distinguishing	domain	vs.	implementation	concepts	

34 17-214

Distinguishing	domain	vs.	implementation	concepts	

•  Domain-level	concepts:	
–  Almost	anything	with	a	real-world	analogue	

•  Implementation-level	concepts:	
–  Implementation-like	method	names	
–  Programming	types	
–  Visibility	modifiers	
–  Helper	methods	or	classes	
–  Artifacts	of	design	patterns	

35 17-214

Summary:		Understanding	the	problem	domain	

•  Know	your	tools	to	build	domain-level	representations	
–  Domain	models	
–  System	sequence	diagrams	
–  System	behavioral	contracts	

•  Be	fast	and	(sometimes)	loose	
–  Elide	obvious(?)	details	
–  Iterate,	iterate,	iterate,	…	

•  Get	feedback	from	domain	experts	
–  Use	only	domain-level	concepts	

