
1 17-214 

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Designing	classes	
	
A	formal	design	process:		Responsibility	assignment	
	
Josh	Bloch 	 	Charlie	Garrod	



2 17-214 

Administrivia	

•  Homework	3	late	deadline	tonight	
•  Required	reading	due	today	

–  UML	and	Patterns	Chapters	14,	15,	and	16	

•  Midterm	exam	Thursday	
–  Exam	review	session:		Wednesday	6-8	pm,	DH	A302	

•  Homework	4	
–  Three	parts,	part	A	due	next	Thursday,	February	20th	
–  Design	review	meetings	next	week	

https://commons.wikimedia.org/wiki/File:1_carcassonne_aerial_2016.jpg	



3 17-214 

Key	concepts	from	last	Thursday	



4 17-214 

Sequence	diagrams	to	visualize	dynamic	behavior	



5 17-214 

An	object-oriented	design	process	

•  Model	/	diagram	the	problem,	define	objects	
–  Domain	model		(a.k.a.	conceptual	model)	

•  Define	system	behaviors	
–  System	sequence	diagram	
–  System	behavioral	contracts	

•  Assign	object	responsibilities,	define	interactions	
–  Object	interaction	diagrams	

•  Model	/	diagram	a	potential	solution	
–  Object	model	

Last	Thursday:	
Understanding	
the	problem	

Today:	
Defining	a	
solution	



6 17-214 

Object-oriented	programming	

•  Programming	based	on	structures	
that	contain	both	data	and	methods	

public	class	Bicycle	{	
		private	int	speed;	
		private	final	Wheel	frontWheel,	rearWheel;	
		private	final	Seat	seat;	
		…	
	
		public	Bicycle(…)	{	…	}	
	
		public	void	accelerate()	{		
				speed++;		
		}	
	
		public	int	speed()	{	return	speed;	}	
}	



7 17-214 

Responsibility	in	object-oriented	programming	

•  Data:	
–  Private	or	otherwise	encapsulated	data	
–  Data	in	closely	related	objects	

•  Methods:	
–  Private	or	otherwise	encapsulated	operations	
–  Object	creation,	of	itself	or	other	objects	
–  Initiating	actions	in	other	objects	
–  Coordinating	activities	among	objects	



8 17-214 

Using	interaction	diagrams	to	assign	object	responsibility	

•  For	a	given	system-level	operation,	create	an	object	interaction	
diagram	at	the	implementation-level	of	abstraction	
–  Implementation-level	concepts:	

•  Implementation-like	method	names	
•  Programming	types	
•  Helper	methods	or	classes	
•  Artifacts	of	design	patterns	



9 17-214 

Example	interaction	diagram	#1	

Use	case	scenario:		A	library	member	should	be	able	to	use	her	library	card	to	log	
in	at	a	library	system	kiosk	and	…	



10 17-214 

Example	interaction	diagram	#2	

Use	case	scenario:	…and	borrow	a	book.		After	confirming	that	the	member	has	
no	unpaid	late	fees,	the	library	system	should	determine	the	book’s	due	date	by	
adding	its	loan	period	to	the	current	day,	and	record	the	book	and	its	due	date	as	
a	borrowed	item	in	the	member’s	library	account.	



11 17-214 

Interaction	diagrams	help	evaluate	design	alternatives	

•  Explicitly	consider	design	alternatives	
•  For	each,	sketch	the	interactions	implied	by	the	design	choice	

–  Interactions	correspond	to	the	components'	APIs	



12 17-214 

Interaction	diagrams	help	evaluate	design	alternatives	

•  Explicitly	consider	design	alternatives	
•  For	each,	sketch	the	interactions	implied	by	the	design	choice	

–  Interactions	correspond	to	the	components'	APIs	
	

•  e.g.,	Create	two	diagrams	that	show	the	required	interactions	
when	solving	a	cryptarithm:	
1.  First,	assuming	that	an	instance	of	the	cryptarithm	class	has	the	

responsibility	to	solve	itself	
2.  Instead,	assuming	that	a	main	method	(or	another	external	method	or	

class)	has	the	responsibility	to	solve	the	cryptarithm	



13 17-214 

Heuristics	for	responsibility	assignment	

•  Controller	heuristic	
•  Information	expert	heuristic	
•  Creator	heuristic	

Goals 

Heuristics Patterns 

Principles 



14 17-214 

The	controller	heuristic	

•  Assign	responsibility	for	all	system-level	behaviors	to	a	single	
system-level	object	that	coordinates	and	delegates	work	to	other	
objects	
–  Also	consider	specific	sub-controllers	for	complex	use-case	scenarios	

•  Design	process:		Extract	interface	from	system	sequence	diagrams	
–  Key	principles:		Low	representational	gap	and	high	cohesion	



15 17-214 

Information	expert	heuristic	

•  Assign	responsibility	to	the	class	that	has	the	information	
needed	to	fulfill	the	responsibility	
–  Initialization,	transformation,	and	views	of	private	data	
–  Creation	of	closely	related	or	derived	objects	



16 17-214 

Responsibility	in	object-oriented	programming	

•  Data:	
–  Private	or	otherwise	encapsulated	data	
–  Data	in	closely	related	objects	

•  Methods:	
–  Private	or	otherwise	encapsulated	operations	
–  Object	creation,	of	itself	or	other	objects	
–  Initiating	actions	in	other	objects	
–  Coordinating	activities	among	objects	



17 17-214 

Information	expert	heuristic	

•  Assign	responsibility	to	the	class	that	has	the	information	
needed	to	fulfill	the	responsibility	
–  Initialization,	transformation,	and	views	of	private	data	
–  Creation	of	closely	related	or	derived	objects	

•  Design	process:		Assignment	from	domain	model	
–  Key	principles:		Low	representational	gap	and	low	coupling	



18 17-214 

Creator	heuristic:		Who	creates	an	object	Foo?	

•  Assign	responsibility	of	creating	an	object	Foo	to	a	class	that:	
–  Has	the	data	necessary	for	initializing	instances	of	Foo	
–  Contains,	aggregates,	or	records	instances	of	Foo	
–  Closely	uses	or	manipulates	instances	of	Foo	

•  Design	process:		Extract	from	domain	model,	interaction	diagrams	
–  Key	principles:		Low	coupling	and	low	representational	gap	



19 17-214 

Challenges	when	using	the	creator	heuristic	

•  In	Homework	2,	what	object	should	have	the	responsibility	for	
creating	each	instruction	when	parsing	an	assembly	file?	



20 17-214 

There	exist	many	heuristics	

•  Minimize	mutability	
•  Minimize	conceptual	weight	
•  Favor	composition/delegation	over	inheritance	
•  Use	indirection	to	reduce	coupling	
•  …	



21 17-214 

Object-level	artifacts	of	this	design	process	

•  Object	interaction	diagrams	add	methods	to	objects	
–  Can	infer	additional	data	responsibilities	
–  Can	infer	additional	data	types	and	architectural	patterns	

•  Object	model	aggregates	important	design	decisions	
–  Is	an	implementation	guide	



22 17-214 

Creating	an	object	model	

•  Extract	data,	method	names,	and	types	from	interaction	diagrams	
–  Include	implementation	details	such	as	visibilities	



23 17-214 



24 17-214 

Create	an	object	model	for	Homework	3?	

•  Not	today!	



25 17-214 

Summary:	

•  Object-level	interaction	diagrams	and	object	model	
systematically	guide	the	design	process	
–  Convert	domain	model,	system	sequence	diagram,	and	contracts	to	

object-level	responsibilities	

•  Use	heuristics	to	guide,	but	not	define,	design	decisions	
•  Iterate,	iterate,	iterate…	


