
117-214

School	of	
Computer	Science

Principles	of	Software	Construction

’tis	a	Gift	to	be	Simple	or	Cleanliness	is	Next	to	Godliness

Midterm	1	and	Homework	3	Post-Mortem

Josh	Bloch Charlie	Garrod

217-214

Administrivia

• Homework	4a	due	Thursday,	11:59	p.m.
– Design	review	meeting	is	mandatory

317-214

Outline

• Midterm	exam	post-mortem
• Permutation	generator	post-mortem
• Cryptarithm	post-mortem

417-214

Midterm	exam	results

517-214

Anyone	know	a	simpler	expression	for	this?

if (myDog.hasFleas()) {
return true;

} else {
return false;

}

617-214

Hint:	it’s	not	this

return myDog.hasFleas() ? true : false;

717-214

Please	do	it	this	way	from	now	on
We	reserve	the	right	to	deduct	points	if	you	don’t

return myDog.hasFleas();

817-214

Also,	we	saw	some	hash	functions	like	these

return 31 * x + 31 * y; // Multiplication doesn’t help!

return 31 * x + 32 * y; // Multiplication hurts!

return Objects.hash(map); // Objects.hash unnecessary!

917-214

Here's	how	these	should	look

return 31 * x + 31 * y; return 31 * x + y;

return 31 * x + 32 * y; return 31 * x + y;

return Objects.hash(map); return map.hashCode();

1017-214

What	should	a	hash	code	look	like,	in	general?
Standard	Java	hash	functions	- not	great,	but	good	enough

• Single-field	object
– field.hashCode()

• Two-field	object
– 31*field1.hashCode() + field0.hashCode()

• 3-field	object
– 31*(31*field2.hashCode() + field1.hashCode) + field0.hashCode

– =	312 *	field2.hashCode()	+	31	*	field1.hashCode()	+	field0.hashCode()

• N-field	object
– Repeatedly	multiply	total	by	31	and	add	in	next	field

• =	 Σ 31i ·	hashCode(fieldi)
– Alternatively:	Objects.hash(field0, field1, … fieldN-1)

• For	much	more	information,	see	Effective	Java	Item	9

1117-214

Some	solutions	were	correct	but	repetitious

• Repetition	isn’t	just	inelegant,	it’s	toxic
• Avoiding	repetition	is	essential	to	good	programming
• Provides	not	just	elegance,	but	quality
• Ease	of	understanding	aids	in

– Establishing	correctness
– Maintaining	the	code

• If	code	is	repeated,	each	bug	must	be	fixed	repeatedly
– If	you	forget	to	fix	one	occurrence,	program	is	subtly	broken

• Train	yourself	to	feel	a	twinge	of	pain	each	time	you	copy-paste

1217-214

A	good,	basic	solution	– fields	and	constructor	(1/3)

1317-214

What's	the	best	internal	representation	if	you	want	to	
support	more	base	units?

1417-214

Outline

• Midterm	exam	post-mortem
• Permutation	generator	post-mortem
• Cryptarithm	post-mortem

1517-214

Design	comparison	for	permutation	generator

• Command	pattern
– Easy	to	code
– Reasonably	pretty	to	use

• Iterator pattern
– Tricky	to	code	because	algorithm	is	recursive	and	Java	lacks	generators
– Really	pretty	to	use

• Performance	is	similar

1617-214

A	complete	(!),	general-purpose	permutation	generator
using	the	command	pattern

1717-214

How	do	you	test	a	permutation	generator?

Make	a	list	of	items	to	permute	(integers	should	do	nicely)

For	each	permutation	of	the	list	{
Check	that	it’s	actually	a	permutation	of	the	list
Check	that	we	haven’t	seen	it	yet
Put	it	in	the	set	of	permutations	that	we	have	seen

}

Check	that	the	set	of	permutations	we’ve	seen	has	right	size	(n!)

Do	this	for	all	reasonable	values	of	n,	and	you’re	done!

1817-214

And	now,	in	code	– this	is	the	whole	thing!

static void exhaustiveTest(int size) {
List<Integer> list = new ArrayList<>(size);
for (int i = 0; i < size; i++)

list.add(i);
Set<Integer> elements = new HashSet<>(list);

Set<List<Integer>> alreadySeen = new HashSet<>();
doForAllPermutations(list, (perm) -> {

Assert.assertEquals(perm.size(), size);
Assert.assertEquals(new HashSet(perm), elements);
Assert.assertFalse("Duplicate", alreadySeen.contains(perm));
alreadySeen.add(new ArrayList<>(perm));

});
Assert.assertEquals(alreadySeen.size(), factorial(size));

}

@Test public void test() {
for (int size = 0; size <= 10; size++)

exhaustiveTest(size);
}

1917-214

Pros	and	cons	of	exhaustive	testing

• Pros	and	cons	of	exhaustive	testing
+	Gives	you	absolute	assurance	that	the	unit	works
+	Exhaustive	tests	can	be	short	and	elegant
+	You	don’t	have	to	worry	about	what	to	test
−	Rarely	feasible;	Infeasible	for:	

• Nondeterministic	code,	including	most	concurrent	code
• Large	state	spaces

• If	you	can	test	exhaustively,	do!
• If	not,	you	can	often	approximate	it	with	random	testing

2017-214

Outline

• Midterm	exam	post-mortem
• Permutation	generator	post-mortem
• Cryptarithm	post-mortem

2117-214

A	fast,	fully	functional	cryptarithm	solver	in	6	slides

To	refresh	your	memory,	here’s	the	grammar

cryptarithm ::= <expr> "=" <expr>
expr ::= <word> [<operator> <word>]*
word ::= <alphabetic-character>+
operator ::= "+" | "-" | "*"

2217-214

Cryptarithm	class	(1)	– fields

2317-214

Conclusion

• Good	habits	really	matter
– “The	way	to	write	a	perfect	program	is	to	make	yourself	a	perfect	

programmer	and	then	just	program	naturally.”	– Watts		S.	Humphrey,	1994

• Don’t	just	hack	it	up	and	say	you’ll	fix	it	later
– You	probably	won’t
– but	you	will	get	into	the	habit	of	just	hacking	it	up

• Representations	matter!	Choose	carefully.
– If	your	code	is	getting	ugly,	think	again
– “A	week	of	coding	can	often	save	a	whole	hour	of	thought.”

• Not	enough	to	be	merely correct;	code	must	be	clearly correct
– Nearly correct	is	right	out.

