Principles of Software Construction:
Objects, Design, and Concurrency

Introduction to concurrency and GUIs

Charlie Garrod Josh Bloch

Carnegie Mellon University
School of Computer Science
o

institute for
I S SOFTWARE
RESEARCH

[]
institute for
_ SOFTWA
17-214 | S [Fat

Administrivia

 Reading due Tuesday: UML and Patterns 26.1 and 26.4
* Homework 4a due tonight

— Homework 4a feedback coming next week

* Homework 4b due Thursday, March 5t
— An aside: testing

°
institute for
17-214 2 SO

Key concepts from Tuesday

* Internal representations matter
* Good code is clean and concise

* Good coding habits matter

[]
institute for
_ SOFTWA
17-214 | S [Fsas:

Key concepts from yesterday's recitation

* Discovering design patterns
* Observer design pattern

[]
institute for
_ SOFTWA
17-214 s [Hi e

Observer pattern (a.k.a. publish/subscribe)

* Problem: Must notify other objects (observers) without
becoming dependent on the objects receiving the notification

 Solution: Define a small interface to define how observers
receive a notification, and only depend on the interface

* Consequences:
— Loose coupling between observers and the source of the notifications
— Notifications can cause a cascade effect

See edu.cmu.cs.cs214.recO6.alarmclock.AlarmListener...

[]
institute for
_ SOFTWA
17-214 s [H s

Today

* The observer pattern
* Introduction to concurrency

 |ntroduction to GUIs

®
institute for
17-214 6

A thread is a thread of execution

* Multiple threads in the same program concurrently

* Threads share the same memory address space
— Changes made by one thread may be read by others

 Multithreaded programming
— Also known as shared-memory multiprocessing

[]
institute for
_ SOFTWA
17-214 7 [H e

Threads vs. processes

* Threads are lightweight; processes are heavyweight
 Threads share address space; processes don't
 Threads require synchronization; processes don't

e It's unsafe to kill threads; safe to kill processes

[]
institute for
_ SOFTWA
17-214 s [Hl e

Reasons to use threads

* Performance needed for blocking activities
* Performance on multi-core processors

* Natural concurrency in the real-world
* Existing multi-threaded, managed run-time environments

[]
institute for
_ SOFTWA
17-214 o [

A simple threads example

public interface Runnable { // java.lang.Runnable
public void run();

¥

public static void main(String[] args) {
int n = Integer.parselnt(args[©]); // Number of threads;

Runnable greeter = new Runnable() {
public void run() {
System.out.println("Hi mom!");

}
s

for (int 1 = 0; 1 < n; i++) {

new Thread(greeter).start();

}

[]
institute for
17-214 10

A simple threads example

public interface Runnable { // java.lang.Runnable
public void run();

¥

public static void main(String[] args) {
int n = Integer.parselnt(args[©]); // Number of threads;

Runnable greeter = () -> System.out.println("Hi mom!");
for (int i = @; 1 < n; i++) {

new Thread(greeter).start();
}

[]
institute for
17-214 11

A simple threads example

public interface Runnable { // java.lang.Runnable
public void run();

¥

public static void main(String[] args) {
int n = Integer.parselnt(args[©]); // Number of threads;

for (int 1 = 0; i < n; i++) {

new Thread(() -> System.out.println("Hi mom!")).start();
}

[]
institute for
17-214 12

Aside: Anonymous inner class scope in Java

public interface Runnable { // java.lang.Runnable
public void run();

¥

public static void main(String[] args) {
int n = Integer.parselnt(args[©]); // Number of threads;

for (int 1 = 0; i < n; i++) {
new Thread(() -> System.out.println("T" + 1i)).start();

}
} A\
won't compile
because i mutates

[]
institute for
17-214 13

Aside: Anonymous inner class scope in Java

public interface Runnable { // java.lang.Runnable
public void run();

¥

public static void main(String[] args) {
int n = Integer.parselnt(args[©]); // Number of threads;

for (int 1 = 0; i < n; i++) {

int j = i; // j unchanging within each loop
new Thread(() -> System.out.println("T" + j)).start();

. .

j is effectively final

[]
institute for
17-214 14

Example: generating cryptarithms

static List<String> cryptarithms(String[] words, int start, int end) {
List<String> result = new ArraylList<>();

BT N T ¥

String[] tokens = new String[] {"", "+", , "=

// Check if each adjacent triple in words is a "good" cryptarithm
for (int i = start; i < end - 2; i++) {
tokens[@] = words[i];
tokens[2] = words[i + 1];
tokens[4] = words[1i + 2];
try {
Cryptarithm c = new Cryptarithm(tokens);
if (c.solve().size() == 1)
result.add(c.toString()); // We found a "good" one
} catch (IllegalArgumentException e) {
// too many letters in cryptarithm; ignore

}
}

return result;

institute for
17-214 15

Single-threaded driver

public static void main(String[] args) {
Instant start = Instant.now();
List<String> cryptarithms = cryptarithms(words, @, words.length);

Instant end = Instant.now();

Duration time = Duration.between(start, end);
System.out.printf("Time: %d%n ms”, time.toMillis());
System.out.println(cryptarithms);

institute for
17-214 16

Multithreaded driver

public static void main(String[] args) throws InterruptedException {

int n = Integer.parselnt(args[@]); // Number of threads
Instant startTime = Instant.now();
int wordsPerThread = words.length / n;
Thread[] threads = new Thread[n];
Object[] results = new Object[n];
for (int i = 0; i < n; i++) { // Create the threads
int start =1 ==0 ? @ : 1 * wordsPerThread - 2;
int end = 1 =
int j = i; // Only constants can be captured by lambdas
threads[i] = new Thread(() -> {
results[j] = cryptarithms(words, start, end);

});
}

for (Thread t : threads) t.start();
for (Thread t : threads) t.join();
Instant endTime = Instant.now();

Duration time = Duration.between(start, end);
System.out.printf("Time: %d%n ms”, time.toMillis());
System.out.println(Arrays.toString(results));

}
17-214 17

= n-1 ? words.length : (i + 1) * wordsPerThread;

institute for
| S SOFTWARE
RESEARCH

Cryptarithm generation performance

Number of Threads

1 22.0
2 13.5
3 11.7
4 10.8

Generating all cryptarithms from a corpus of 344 words

* Test all consecutive 3-word sequences (342 possibilities)

* Test machine is crappy old laptop (2 cores, 4 hyperthreads)
* These numbers are at-best approximate

®
institute for
17-214 18 SO

Shared mutable state requires synchronization

* Three basic choices:
1. Don't mutate: share only immutable state
2. Don't share: isolate mutable state in individual threads
3. If you must share mutable state: synchronize properly

[]
institute for
17-214 19

The challenge of synchronization

* Not enough synchronization: safety failure
— Incorrect computation

* Too much synchronization: liveness failure

— Possibly: No computation at all

[]
institute for
17-214 20

Synchronization in the cryptarithm example

How did we avoid sync in multithreaded cryptarithm generator?

Embarrassingly parallelizable computation

Each thread is entirely independent of the others
— They solve different cryptarithms...
— And write results to different array elements

No shared mutable state to speak of
— Main thread implicitly synchronizes with workers using join

[]
institute for
17-214 21

Today

* The observer pattern
* Introduction to concurrency

 |ntroduction to GUIs

®
institute for
17-214 22

Event-based programming

e Style of programming where control-flow is driven by (usually
external) events

public void performAction (ActionEvent e) {
List<String> lst = Arrays.asList (bar);

& Powerpoint File Edt View Insert Format Amange Tools SlideShow Window $ Help 16 @ & LI 40 = & 4 (@ 100%BE Vied 11:03PM Charles Garrod Q. i=

foo.peek (42) v e -introduction-to-concutrency-and-guis. pptx
} o m o (2 o M8 e e a-
 Home | Thwmems T ot St S| Armtioms o St st oo,

T Bene S e Arwns Sk

Event-based programming

« Style of programming where control-flow is driven by (usually

external) events

public void performAction (ActionEvent e) {
bigBloatedPowerPointFunction (e) ;

withANameSoLongIMadeItTwoMethods (e); <”H

yesIKnowJavaDoesntWorkLikeThat (e) ;

15214 o

[A o0 | o @ =

public void performAction (ActionEvent e) {
List<String> lst = Arrays.asList (bar);
foo.peek (40)

17-214 TR | S [B

RESEARCH

Examples of events in GUIs

* User clicks a button, presses a key

e User selects an item from a list, an item from a menu
 Mouse hovers over a widget, focus changes

e Scrolling, mouse wheel turned

* Resizing a window, hiding a window
 Draganddrop

* A packet arrives from a web service, connection drops, ...
e System shutdown, ...

[]
institute for
17-214 24

Blocking interaction with command-line interfaces

Terminal — 0

File Edit View Search Terminal Help
scripts/kconfig/conf arch/x86/Kconfig

*

Linux Kernel Configuration

*
*
*
*

General setup

*

Prompt for development and/or incomplete code/drivers (EXPERIMENTAL) [Y/n/?]
Local version - append to kernel release (LOCALVERSION) []

Automatically append version information to the version string (LOCALVERSION_AUT
0) [N/y/?1y

Kernel compression mode

> 1. Gzip (KERNEL_GZIP)

2. Bzip2 (KERNEL_BZIP2) . .
N AR Scanner input = new Scanner(System.in);

h4;L%2§f?W§kJ10) while (questions.hasNext()) {
choice[1-4?]: . .
Support for paging of ano Question q = question.next();

System V IPC (SYSVIPC) [V System.out.println(q.toString());

POSIX Message Queues (POS . s .]
BSD Process Accounting (B Str\lng dnsSwer = 1nPUt°neXtL1ne():

Export task/process stati qg. r'espond(answer‘) 5

1y }
Enable per-task delay a
- institute for
17-214 25

Blocking interactions with users

newGame

action execution

|

|

I

|

|

|

|

, |
. g

Acti
/ get Ict|on \ >i blocking

:

_l

|

[action==iI1it] addCard

institute for
SOFTWARE
RESEARCH

17-214

Interactions with users through events

* Do not block waiting for user response
e Instead, react to user events

Game Dealer Player
newGame : : :
> | |
: addCards : :
| > |
: addCards :
| | |
| | >
| | |
| | |
| | |
| | |
| | |
| | |
hit | | |
| | |
pi | |
: addCard :
i i

institute for
I d 'li SOFTWARE
27 RESEARCH

17-2Y4

GUIs: To be continued...

[]
institute for
17-214 28

Paper slides from lecture are scanned below..

[]
institute for
17-214 29

Objedt 1

%)

o~

N

217

——

: [Al
;'a '\eﬁlr Codle \

T —]

o ’l"\glfjﬁ (n\ﬁ CS&}@J

	11-introduction-to-concurrency-and-guis
	20191003-introduction-to-concurrency-and-guis
	11-introduction-to-concurrency-and-guis
	observer-game-paper-slides

