Principles of Software Construction:
Objects, Design, and Concurrency

Part 2: Design case studies

Design case study: Java Swing

Josh Bloch Charlie Garrod

Carnegie Mellon University
School of Computer Science

. . .
Institute For
I S SOFTWARE
RESEARCH
17-214

1

institute for
SOFTWARE
RESEARCH

Administrivia

 Reading due today: UML and Patterns 26.1 and 26.4
* Homework 4b due Thursday, March 5t

N

https://commons.wikimedia.org/wiki/File:1_carcassonne_aerial_2016.jpg

[)
institute for
- SOFTWARE
17 214 2 RESEARCH

Key concepts from Thursday

Observer design pattern

Introduction to concurrency
— Not enough synchronization: safety failure
— Too much synchronization: liveness failure

Event-based programming

Introduction to GUIs

°
institute for

- SOFTWARE
17-214 3

Today

* Finish introduction to GUIs

* Design case study: GUI potpourri
— Strategy
— Template method
— Observer
— Composite
— Decorator
— Adapter
— Facade
— Command

— Chain of responsibility

e Design discussion: Decoupling your game from your GUI

°
institute for

- SOFTWARE
17-214 a

Examples of events in GUIs

* User clicks a button, presses a key

e User selects an item from a list, an item from a menu
 Mouse hovers over a widget, focus changes

e Scrolling, mouse wheel turned

* Resizing a window, hiding a window
 Draganddrop

* A packet arrives from a web service, connection drops, ...
e System shutdown, ...

°
institute for

- SOFTWARE
17-214 5

An event-based GUI with a GUI framework

* Setup phase
— Describe how the GUI window should look
— Register observers to handle events

* Execution
— Framework gets events from OS, processes events
* Your code is mostly just event handlers

Application

event—
mouse, key,
redraw, ...

drawing
commands

GUI
Framework

get
event

oS

See edu.cmu.cs.cs214.recO6.alarmclock.AlarmWindow...

17-214

institute for
6 I S SOFTWARE
RESEARCH

GUI frameworks in Java

* AWT — obsolete except as a part of Swing
 Swing — widely used

 SWT — Little used outside of Eclipse

e JavaFX —Billed as a replacement for Swing

— Released 2008 — never gained traction

* A bunch of modern (web & mobile) frameworks
— e.g., Android

°

institute for

- SOFTWARE
17 214 7 RESEAI;\CH

GUI programming is inherently multi-threaded

* Swing Event dispatch thread (EDT) handles all GUI events
— Mouse events, keyboard events, timer events, etc.

* No other time-consuming activity allowed on the EDT

— Violating this rule can cause liveness failures

°
institute for

- SOFTWARE
17-214 8

Ensuring all GUI activity is on the EDT

* Never make a Swing call from any other thread
— “Swing calls” include Swing constructors

e If not on EDT, make Swing calls with invokelLater:

public static void main(String[] args) {
SwingUtilities.invokelLater(() -> new Test().setVisible(true));

}

°
institute for

- SOFTWARE
17-214 o

Callbacks execute on the EDT

* You are a guest on the Event Dispatch Thread!
— Don’t abuse the privilege

* If >afew ms of work to do, do it off the EDT
— javax.swing.Swinghorker designed for this purpose

[J
institute for
17-214 10 SO

Components of a Swing application

JFrame

JPanel

JButton
JTextField

17-214

MenuWidgetl MenuWidget2

ToolbarButton [v] ToolbarCheckBox

PanelCaption
Panel [‘SelectedTab | OtherTab
Item 1 ® RadioButtonl [] UncheckedCheckBox
tem 2 C RadioButton2 CheckedCheckBox
Item 3 —~ .
) RadioButton3 -
Item 4 . -] InactiveCheckBox
Item 5 .} InactiveRadio
Button o
N
TextField | frextArea
|............. |
Item 1 —

11

institute for
SOFTWARE
RESEARCH

Swing has many widgets

« JlLabel e JTextField
* JButton * JTextArea
 JCheckBox e JList

« JChoice e JScrollBar
« JRadioButton e ...and more

e JFrame is the Swing Window

e JPanel (a.k.a. a pane) is the container to which you add your components
(or other containers)

[J
institute for
17-214 12 SO

To create a simple Swing application

 Make a window (a JFrame)
 Make a container (a JPanel)

— Putitin the window

 Add components (buttons, boxes, etc.) to the container
— Use layouts to control positioning
— Set up observers (a.k.a. listeners) to respond to events
— Optionally, write custom widgets with application-specific display logic

* Set up the window to display the container

e Then wait for events to arrive...

[J
institute for
17-214 13 SO

E.g., creating a button

// public static void main..
JFrame window = ..

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton("Click me");
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
System.out.println(“Button clicked”);

¥
1)
panel.add(button);

window.setVisible(true);

institute for
17-214 14 SO

E.g., creating a button

// public static void main..
JFrame window = ..

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton("Click me");
button.addActionListener(

(e) -> System.out.println("Button clicked"));
panel.add(button);

window.setVisible(true);

. .
institute for

I S SOFTWARE
RESEARCH

17-214

The javax.swing.ActionListener

e Listeners are objects with callback functions
— Can be registered to handle events on widgets
— All registered widgets are called if event occurs

interface ActionListener {
void actionPerformed(ActionEvent e);

}

class ActionEvent {
int when;
String actionCommand;
int modifiers;
Object source();
int id;

[J
institute for
17-214 16 SO

Button design discussion

* Button implementation should be reusable but customizable
— Different button label, different event-handling

 Must decouple button's action from the button itself

* Listeners are separate independent objects
— Assingle button can have multiple listeners
— Multiple buttons can share the same listener

[J
institute for
17-214 17 SO

Swing has many event listener interfaces

e ActionListener e Mouselistener

* AdjustmentListener * TreeExpansionListener
* FocuslListener e TextListener

e ItemListener e WindowListener

« KeyListener .

class ActionEvent {
int when;
String actionCommand;
int modifiers;
Object source();
int id;

interface ActionListener {

void actionPerformed(ActionEvent e);

}

[J
institute for
17-214 18 SO

Today

* Finish introduction to GUIs

* Design case study: GUI potpourri
— Strategy
— Template method
— Observer
— Composite
— Decorator
— Adapter
— Facade
— Command

— Chain of responsibility

e Design discussion: Decoupling your game from your GUI

[J
institute for
17-214 19 SO

The decorator pattern abounds

one N
two

three

four

five v

Arlo Hugo Milo

Jethro Nemo

Elmo Laszlo Otto

< | Il | I

institute for
17-214 20 SO

The decorator pattern abounds

one -
two 7%
2
three %
four [
<<interface>> five v
DecoratorWindowTest |- - - - > P e <
+main(args:Strin : _void +draw(): void
+getDescription(): String

4 Arlo Hugo Milo
1 [Cosmo |Jethro Nemo

SimpleWindow WindowDecoratork>— F'mo Laszo Ofo
+draw(): void < Il] | »
:getDescription(): String_

HorizontalScrollBarDecorator VerticalScrollBarDecorator

+draw(): void +draw(): void
+getDescription(): String +getDescription(): String
-drawHorizontalScrollBar(): void -drawerticalScrollBar(): void

UML from https://medium.com/@dholnessii/structural-design-patterns-decorator-30f5a8c106a5
- institute for
17-214 21 SO

Swing layouts

BoxLayoutDemo Q@

FlowLayoutDemo Button 1
Button 1 Button 2 Button 3 Long-Named Button 4 5 Button 2
Button 3

The simplest, and default, layout. Long-Named Bution 4
Wraps around when out of space. L5

Like FlowLayout, but no wrapping

GridLayoutDemo
BorderLayoutDemo
Bulton. Sutton 2 Button 1 (PAGE_START)
Button 3 Long-Named Button 4

Button 3 (LINE_START) Button 2 (CENTER) 5 (LINE_END)

5

Harizontal gap: Vertical gap:
2L el Long-Named Button 4 (PAGE_END)

0 v |0 v | Apply gaps

More sophisticated layout managers

see http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html .

institute for
17-214 22 SO

A naive hard-coded implementation

class JPanel {
protected void doLayout() {
switch(getLayoutType()) {
case BOX_LAYOUT: adjustSizeBox(); break;
case BORDER_LAYOUT: adjustSizeBorder(); break;

¥

}
private adjustSizeBox() { .. }

¥

* A new layout would require changing or overriding JPanel

[J
institute for
17-214 23 SO

A better solution: delegate the layout responsibilities

* Layout classes, e.g.:
contentPane.setLayout(new FlowLayout());
contentPane.setLayout(new GridlLayout(4,2));

* Similarly, there are border classes to draw the borders, e.g.:
contentPane.setBorder(new EmptyBorder(5, 5, 5, 5));

[J
institute for
17-214 24 SO

Another GUI design challenge: nesting containers

A JFrame contains a JPanel, which contains a JPanel (and/or
other widgets), which contains a JPanel (and/or other
widgets), which contains...

Message

=x=]

BorderLayout()
GridLayout(1,0)

|Pane| 1

Panel 2

GridLayout(1,0)

|Pane| 3|Pane| 4

Panel 5|Pane| 6|

OK

17-214

°
- S institute for
SOFTWARE

25 RESEARCH

The composite pattern

* Problem: Collection of objects has behavior similar to the
individual objects

e Solution: Have collection of objects and individual objects
implement the same interface

* Conseguences:
— Client code can treat collection as if it were an individual object

— Easier to add new object types
— Design might become too general, interface insufficiently useful

[J
institute for
17-214 26 SO

Another composite pattern example

public interface Expression {
double eval(); // Returns value

}

public class BinaryOperationExpression implements Expression {
public BinaryOperationExpression(BinaryOperator operator,
Expression operandl, Expression operand2);

}

public class NumberExpression implements Expression {
public NumberExpression(double number);

¥

institute for
17-214 27 SO

Recall: Creating a button

//static public void main..
JFrame window = ..

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton(“Click me”);
button.addActionListener((e) -> {
System.out.println(“Button clicked");

1)
panel.add(button);

window.setVisible(true);

o
institute for
17-214 28 SO

An alternative button

class MyButton extends JButton {
public MyButton() { super(“Click me”); }
@Override
protected void fireActionPerformed(ActionEvent e) {
super.fireActionPerformed(e);
System.out.println(“Button clicked”);

¥

//static public void main..
JFrame window = ..

JPanel panel = new JPanel();
window.setContentPane(panel);
panel.add(new MyButton());
window.setVisible(true);

17-214 29

institute for
SOFTWARE
RESEARCH

Discussion: Command vs. template method patterns

//static public void main..
JFrame window = ..

JPanel panel = new JPanel();
window.setContentPane(panel);

JButton button = new JButton(“Click me”);
button.addActionListener((e) -> {

System.out.println(“Button clicked");

})s

panel.c

window.

class MyButton extends JButton {
public MyButton() { super(“Click me”); }
@Override

protected void fireActionPerformed(ActionEvent e) {

super.fireActionPerformed(e);
System.out.println(“Button clicked”);

17-214

- S institute for
SOFTWARE
30 RESEARCH

Better use of template method: partial customization

JComponent:
paint

public void paint(Graphics g)

Invoked by Swing to draw components. Applications should not invoke paint directly, but
should instead use the repaint method to schedule the component for redrawing.

This method actually delegates the work of painting to three protected methods:
paintComponent, paintBorder, and paintChildren. They're called in the order listed to
ensure that children appear on top of component itself. Generally speaking, the component and
its children should not paint in the insets area allocated to the border. Subclasses can just
override this method, as always. A subclass that just wants to specialize the Ul (look and feel)
delegate's paint method should just override paintComponent.

Overrides:

paint in class Container

| » PROTFRTTFY PEea

institute for
17-214 31 SO

Event propagation and deep container hierarchies

Message lﬁj ece MU X& X& Y 1X1(BX1 Charlie;
< C Qb. @ % @0 RO ® ® 510 |
® BorderLayout() 413 214 [piazza £ Services [1 http://192.168.56....
Sl L o, Current todo list:
Panel 1 [Panel 2
GridLayout(1,0) 1. X Finish this to-do list

2. X Add another item
IPanel 3|Panel 4JPanel 5|Panel 6| 3. X Talk about event propagation

OK Item to add: Submit |

institute for
17-214 32 SO

Event propagation and deep container hierarchies

Message lﬁj ece MU X& X& Y 1X1(BX1 Charlie;
< C Qb. @ % @0 RO ® ® 510 |
® BorderLayout() 413 214 [piazza £ Services [1 http://192.168.56....
Sl L o, Current todo list:
Panel 1 [Panel 2
GridLayout(1,0) 1. X Finish this to-do list

2. X Add another item
[Panel 3jPanel 4Panel 5{Panel § 3(XJTalk about event propagation

OK Item to add: Submit |

institute for
17-214 33 SO

Event propagation and deep container hierarchies

Message lﬁ] ® ® ?"T'L-1-1vev1:Charlie;
¢ C Ob. Q% @O0 fKRO® @510 |
@ BorderLayout() 413 214 [piazza £ Services [1 http://192.168.56....
e Current todo list:
|Pane| 1 IPaneI 2
GridLayout(1,0) 1. X Finish this to-do list

2. X Add another item
[Panel 3|Panel 4jPanel 5[Panel 6| 3. X Talk about event propagation

OK Item to add: Submit |

institute for
17-214 34 SO

Event propagation and deep container hierarchies

Message w ® ® ?"f'(.-1v1v3v1i» Charlie;
¢ C Qb. @ % @0 f[FOD® O]
@ BorderLayout() 413 214 [piazza £ Services [1 http://192.168.56....
e Current todo list:
|Panel 1 IPaneI 2
GridLayout(1,0) 1. X Finish this to-do list

2. X Add another item
[Panel 3|Panel 4|Panel 5|Panel 6| 3. X Talk about event propagation

OK Item to add: Submit |

institute for
17-214 35 SO

Event propagation and deep container hierarchies

Message W ® 'm(mV e Ve 1 1\Bs 1\ Charlie;

. —
& C Q@lb. @ % @ O a 0| ®]
@ BorderLayout() 413 214 [Z piazza £ Services [J http://192.168.56....

| ~ ™~
GridLayout(1,0) Current todo list:
|Pane| 1 IPaneI 2

1. X Finish this to-do list

GridL (1,0 i
ridLayout(1,0) 2. X Add another item
IPanel 3{Panel 4|Panel 5Panel 6| 3. X Talk about event propagation

OK Item to add: Submit |
_ J

N

institute for
17-214 36 SO

The chain of responsibility pattern

* Problem: You need to associate functionality within a deep
nested or iterative structure, possibly with multiple objects

* Solution: Request for functionality, pass request along chain
until some component handles it

* Conseguences:
— Decouples sender from receiver of request
— Can simplify request-handling by handling requests near root of hierarchy
— Handling of request not guaranteed

@00 /M W e (& (1X1BY1 Charlie

‘é C@Io...Qﬁ@Om @] |
| 413 214 Piazza = Services [http://192.168.56.... |

Current todo list:

1. X Finish this to-do list
2. X Add another item

3. X Talk about event propagation

| Item to add: Submit | |

institute for
17-214 37 SO

Today

* Finish introduction to GUIs

* Design case study: GUI potpourri
— Strategy
— Template method
— Observer
— Composite
— Decorator
— Adapter
— Facade
— Command

— Chain of responsibility

e Design discussion: Decoupling your game from your GUI

[J
institute for
17-214 38 SO

Design discussion: Decoupling your game from your GUI

[J
institute for
17-214 39 SO

