
1 17-214

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	2:	Design	case	studies	
	
Design	case	study:		Java	Swing	
	
Josh	Bloch 	 	Charlie	Garrod	

2 17-214

Administrivia	

•  Reading	due	today:		UML	and	Patterns	26.1	and	26.4	
•  Homework	4b	due	Thursday,	March	5th	

https://commons.wikimedia.org/wiki/File:1_carcassonne_aerial_2016.jpg	

3 17-214

Key	concepts	from	Thursday	

•  Observer	design	pattern	
•  Introduction	to	concurrency	

–  Not	enough	synchronization:		safety	failure	
–  Too	much	synchronization:		liveness	failure	

•  Event-based	programming	
•  Introduction	to	GUIs	

4 17-214

Today	

•  Finish	introduction	to	GUIs		
•  Design	case	study:		GUI	potpourri	

–  Strategy	
–  Template	method	
–  Observer	
–  Composite	
–  Decorator	
–  Adapter	
–  Façade	
–  Command	
–  Chain	of	responsibility	

•  Design	discussion:	Decoupling	your	game	from	your	GUI	

5 17-214

Examples	of	events	in	GUIs	

•  User	clicks	a	button,	presses	a	key	
•  User	selects	an	item	from	a	list,	an	item	from	a	menu	
•  Mouse	hovers	over	a	widget,	focus	changes	
•  Scrolling,	mouse	wheel	turned	
•  Resizing	a	window,	hiding	a	window	
•  Drag	and	drop	

•  A	packet	arrives	from	a	web	service,	connection	drops,	…	
•  System	shutdown,	…	

6 17-214

An	event-based	GUI	with	a	GUI	framework	

•  Setup	phase	
–  Describe	how	the	GUI	window	should	look	
–  Register	observers	to	handle	events	

•  Execution	
–  Framework	gets	events	from	OS,	processes	events	

•  Your	code	is	mostly	just	event	handlers	

GUI	
Framework	

OS	

Application	

get
event

drawing
commands

next
event

event—
mouse, key,
redraw, …

See edu.cmu.cs.cs214.rec06.alarmclock.AlarmWindow…

7 17-214

GUI	frameworks	in	Java	

•  AWT	–	obsolete	except	as	a	part	of	Swing	
•  Swing	–	widely	used	
•  SWT	–	Little	used	outside	of	Eclipse	
•  JavaFX	–	Billed	as	a	replacement	for	Swing	

–  Released	2008	–	never	gained	traction	
•  A	bunch	of	modern	(web	&	mobile)	frameworks	

–  e.g.,	Android	

8 17-214

GUI	programming	is	inherently	multi-threaded	

•  Swing	Event	dispatch	thread	(EDT)	handles	all	GUI	events	
–  Mouse	events,	keyboard	events,	timer	events,	etc.	

•  No	other	time-consuming	activity	allowed	on	the	EDT	
–  Violating	this	rule	can	cause	liveness	failures	

9 17-214

Ensuring	all	GUI	activity	is	on	the	EDT	

•  Never	make	a	Swing	call	from	any	other	thread	
–  “Swing	calls”	include	Swing	constructors	

•  If	not	on	EDT,	make	Swing	calls	with	invokeLater:	
	
public	static	void	main(String[]	args)	{	
			SwingUtilities.invokeLater(()	->	new	Test().setVisible(true));	
}	

10 17-214

Callbacks	execute	on	the	EDT	

•  You	are	a	guest	on	the	Event	Dispatch	Thread!	
–  Don’t	abuse	the	privilege	

•  If	>	a	few	ms	of	work	to	do,	do	it	off	the	EDT	
–  javax.swing.SwingWorker	designed	for	this	purpose	

11 17-214

Components	of	a	Swing	application	

JButton

JPanel

JTextField

…

JFrame

12 17-214

Swing	has	many	widgets	

•  JLabel	
•  JButton	
•  JCheckBox	
•  JChoice	
•  JRadioButton	

•  JTextField	
•  JTextArea	
•  JList	
•  JScrollBar	
•  …	and	more	

•  JFrame	is	the	Swing	Window	

•  JPanel	(a.k.a.	a	pane)	is	the	container	to	which	you	add	your	components	
(or	other	containers)	

13 17-214

To	create	a	simple	Swing	application	

•  Make	a	window	(a	JFrame)	
•  Make	a	container	(a	JPanel)	

–  Put	it	in	the	window	
•  Add	components	(buttons,	boxes,	etc.)	to	the	container	

–  Use	layouts	to	control	positioning	
–  Set	up	observers	(a.k.a.	listeners)	to	respond	to	events	
–  Optionally,	write	custom	widgets	with	application-specific	display	logic	

•  Set	up	the	window	to	display	the	container	

•  Then	wait	for	events	to	arrive…	

14 17-214

E.g.,	creating	a	button	

//	public	static	void	main…	
JFrame	window	=	…	
	
JPanel	panel	=	new	JPanel();	
window.setContentPane(panel);	
	
JButton	button	=	new	JButton("Click	me");	
button.addActionListener(new	ActionListener()	{	
				public	void	actionPerformed(ActionEvent	e)	{	
								System.out.println(“Button	clicked”);	
				}	
});	
panel.add(button);	
	
window.setVisible(true);	

panel to hold
the button

15 17-214

E.g.,	creating	a	button	

//	public	static	void	main…	
JFrame	window	=	…	
	
JPanel	panel	=	new	JPanel();	
window.setContentPane(panel);	
	
JButton	button	=	new	JButton("Click	me");	
button.addActionListener(
				(e)	->	System.out.println("Button	clicked"));	
panel.add(button);	
	
window.setVisible(true);	

panel to hold
the button

16 17-214

The	javax.swing.ActionListener	

•  Listeners	are	objects	with	callback	functions	
–  Can	be	registered	to	handle	events	on	widgets	
–  All	registered	widgets	are	called	if	event	occurs	

interface	ActionListener	{	
	void	actionPerformed(ActionEvent	e);	

}	
class	ActionEvent	{	

	int	when;	
	String	actionCommand;	
	int	modifiers;	
	Object	source();	
	int	id;	
	…	

}	

17 17-214

Button	design	discussion	

•  Button	implementation	should	be	reusable	but	customizable	
–  Different	button	label,	different	event-handling	

•  Must	decouple	button's	action	from	the	button	itself	
•  Listeners	are	separate	independent	objects	

–  A	single	button	can	have	multiple	listeners	
–  Multiple	buttons	can	share	the	same	listener	

18 17-214

Swing	has	many	event	listener	interfaces	

•  ActionListener	
•  AdjustmentListener	
•  FocusListener	
•  ItemListener	
•  KeyListener	

•  MouseListener	
•  TreeExpansionListener	
•  TextListener	
•  WindowListener	
•  …	

class	ActionEvent	{	
	int	when;	
	String	actionCommand;	
	int	modifiers;	
	Object	source();	
	int	id;	
	…	

}	interface	ActionListener	{	
	void	actionPerformed(ActionEvent	e);	

}	

19 17-214

Today	

•  Finish	introduction	to	GUIs	
•  Design	case	study:		GUI	potpourri	

–  Strategy	
–  Template	method	
–  Observer	
–  Composite	
–  Decorator	
–  Adapter	
–  Façade	
–  Command	
–  Chain	of	responsibility	

•  Design	discussion:	Decoupling	your	game	from	your	GUI	

20 17-214

The	decorator	pattern	abounds	

21 17-214

The	decorator	pattern	abounds	

UML	from	https://medium.com/@dholnessii/structural-design-patterns-decorator-30f5a8c106a5	

22 17-214

Swing	layouts	

see http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

The	simplest,	and	default,	layout.	
Wraps	around	when	out	of	space.	

Like	FlowLayout,	but	no	wrapping	

More	sophisticated	layout	managers	

23 17-214

A	naïve	hard-coded	implementation	

•  A	new	layout	would	require	changing	or	overriding	JPanel	

class	JPanel	{	
					protected	void	doLayout()	{		

	switch(getLayoutType())	{		
	 	case	BOX_LAYOUT:	adjustSizeBox();	break;		
	 	case	BORDER_LAYOUT:	adjustSizeBorder();	break;		
	 	...		
	}		

					}		
					private	adjustSizeBox()	{	…	}	
}	

24 17-214

A	better	solution:		delegate	the	layout	responsibilities	

•  Layout	classes,	e.g.:			
contentPane.setLayout(new	FlowLayout());	
contentPane.setLayout(new	GridLayout(4,2));	

•  Similarly,	there	are	border	classes	to	draw	the	borders,	e.g.:	
contentPane.setBorder(new	EmptyBorder(5,	5,	5,	5));	

25 17-214

Another	GUI	design	challenge:		nesting	containers	

•  A	JFrame	contains	a	JPanel,	which	contains	a	JPanel	(and/or	
other	widgets),	which	contains	a	JPanel	(and/or	other	
widgets),	which	contains…	

26 17-214

The	composite	pattern	

•  Problem:		Collection	of	objects	has	behavior	similar	to	the	
individual	objects	

•  Solution:		Have	collection	of	objects	and	individual	objects	
implement	the	same	interface	

•  Consequences:	
–  Client	code	can	treat	collection	as	if	it	were	an	individual	object	
–  Easier	to	add	new	object	types	
–  Design	might	become	too	general,	interface	insufficiently	useful	

27 17-214

Another	composite	pattern	example	

public	interface	Expression	{	
				double	eval();					//	Returns	value	
}	
	
public	class	BinaryOperationExpression	implements	Expression	{	
				public	BinaryOperationExpression(BinaryOperator	operator,	
												Expression	operand1,	Expression	operand2);	
}	
	
public	class	NumberExpression	implements	Expression	{	
				public	NumberExpression(double	number);	
}	

28 17-214

Recall:		Creating	a	button	

//static	public	void	main…	
JFrame	window	=	…	
	
JPanel	panel	=	new	JPanel();	
window.setContentPane(panel);	
	
JButton	button	=	new	JButton(“Click	me”);	
button.addActionListener((e)	->	{	

	 	System.out.println(“Button	clicked");	
});	
panel.add(button);	
	
window.setVisible(true);	

29 17-214

An	alternative	button	

class	MyButton	extends	JButton	{	
			public	MyButton()	{	super(“Click	me”);	}	
			@Override	
			protected	void	fireActionPerformed(ActionEvent	e)	{	

	super.fireActionPerformed(e);	
	System.out.println(“Button	clicked”);	

			}	
}	
	
//static	public	void	main…	
JFrame	window	=	…	
JPanel	panel	=	new	JPanel();	
window.setContentPane(panel);	
panel.add(new	MyButton());	
window.setVisible(true);	

30 17-214

Discussion:	Command	vs.	template	method	patterns	

//static	public	void	main…	
JFrame	window	=	…	
	
JPanel	panel	=	new	JPanel();	
window.setContentPane(panel);	
	
JButton	button	=	new	JButton(“Click	me”);	
button.addActionListener((e)	->	{	

	 	System.out.println(“Button	clicked");	
});	
panel.add(button);	
	
window.setVisible(true);	

class	MyButton	extends	JButton	{	
			public	MyButton()	{	super(“Click	me”);	}	
			@Override	
			protected	void	fireActionPerformed(ActionEvent	e)	{	

	super.fireActionPerformed(e);	
	System.out.println(“Button	clicked”);	

			}	
}	…	

31 17-214

Better	use	of	template	method:		partial	customization	

JComponent:	

32 17-214

Event	propagation	and	deep	container	hierarchies	

33 17-214

Event	propagation	and	deep	container	hierarchies	

34 17-214

Event	propagation	and	deep	container	hierarchies	

35 17-214

Event	propagation	and	deep	container	hierarchies	

36 17-214

Event	propagation	and	deep	container	hierarchies	

37 17-214

The	chain	of	responsibility	pattern	

•  Problem:		You	need	to	associate	functionality	within	a	deep	
nested	or	iterative	structure,	possibly	with	multiple	objects	

•  Solution:		Request	for	functionality,	pass	request	along	chain	
until	some	component	handles	it	

•  Consequences:	
–  Decouples	sender	from	receiver	of	request	
–  Can	simplify	request-handling	by	handling	requests	near	root	of	hierarchy	
–  Handling	of	request	not	guaranteed	

38 17-214

Today	

•  Finish	introduction	to	GUIs	
•  Design	case	study:		GUI	potpourri	

–  Strategy	
–  Template	method	
–  Observer	
–  Composite	
–  Decorator	
–  Adapter	
–  Façade	
–  Command	
–  Chain	of	responsibility	

•  Design	discussion:	Decoupling	your	game	from	your	GUI	

39 17-214

Design	discussion:		Decoupling	your	game	from	your	GUI	

