
1 17-214

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Software	engineering	in	practice	
	
Teams,	branch-based	development,	and	workflows	
	
Josh	Bloch 	 	Charlie	Garrod	

2 17-214

Administrivia	

•  Homework	5	team	sign-up	deadline	Thursday	11:59	p.m.	
–  Team	sizes,	presentation	slots…	

•  2nd	midterm	exam	"in	class"	on	Thursday	
–  Please	have	mobile	phone	or	some	other	way	to	scan	documents	
–  Review	session	today	6-8	pm	EDT:		https://cmu.zoom.us/j/343150293	

•  Required	reading	due	next	Tuesday:	
–  Java	Concurrency	in	Practice,	Sections	11.3	and	11.4	

•  Homework	5	frameworks	discussion	
•  Online	format...	

3 17-214

Key	concepts	from	last	Thursday	

•  API	design	principles,	part	2	

4 17-214

Key	design	principle:		Information	hiding	

•  "When	in	doubt,	leave	it	out."	

5 17-214

Minimize	mutability	

•  Classes	should	be	immutable	unless	there's	a	good	reason	to	do	
otherwise	
–  Advantages:		simple,	thread-safe,	reusable	

•  See	java.lang.String	
–  Disadvantage:		separate	object	for	each	value	

•  Mutable	objects	require	careful	management	of	visibility	and	
side	effects	
–  e.g.	Component.getSize()	returns	a	mutable	Dimension	

•  Document	mutability	
–  Carefully	describe	state	space	

6 17-214

Fail	fast	

•  Report	errors	as	soon	as	they	are	detectable	
–  Check	preconditions	at	the	beginning	of	each	method	
–  Avoid	dynamic	type	casts,	run-time	type-checking	

		//	A	Properties	instance	maps	Strings	to	Strings	
		public	class	Properties	extends	HashTable	{	
				public	Object	put(Object	key,	Object	value);	
	
				//	Throws	ClassCastException	if	this	instance	
				//	contains	any	keys	or	values	that	are	not	Strings	
				public	void	save(OutputStream	out,	String	comments);	
		}	

7 17-214

Subtleties	of	information	hiding	

•  Prevent	subtle	leaks	of	implementation	details	
–  Documentation	
–  Lack	of	documentation	
–  Implementation-specific	return	types	
–  Implementation-specific	exceptions	
–  Output	formats	
–  implements	Serializable	

8 17-214

Don't	let	your	output	become	your	de	facto	API	

•  Document	the	fact	that	output	formats	may	evolve	in	the	future	
•  Provide	programmatic	access	to	all	data	available	in	string	form	

9 17-214

Don't	let	your	output	become	your	de	facto	API	

•  Document	the	fact	that	output	formats	may	evolve	in	the	future	
•  Provide	programmatic	access	to	all	data	available	in	string	form	

	public	class	Throwable	{	
			public	void	printStackTrace(PrintStream	s);	
			public	StackTraceElement[]	getStackTrace();	//	since	1.4	
	}	
	
	public	final	class	StackTraceElement	{	
			public	String		getFileName();	
			public	int					getLineNumber();	
			public	String		getClassName();	
			public	String		getMethodName();	
			public	boolean	isNativeMethod();	
	}	

10 17-214

Today:		Toward	software	engineering	in	practice	

•  Two	puzzlers	
•  Software	engineering	for	teams	

–  Challenges	of	working	as	a	team	
–  Tools	and	processes	for	teams	

•  Branch-based	development,	et	al.	

11 17-214

1.	“Time	for	a	Change” (2002)	

If	you	pay	$2.00	for	a	gasket	that	costs	
$1.10,	how	much	change	do	you	get?	

public	class	Change	{	
				public	static	void	main(String	args[])	{	
								System.out.println(2.00	-	1.10);	
				}	
}	

From An Evening Of Puzzlers by Josh Bloch

12 17-214

What	does	it	print?	

(a) 0.9
(b) 0.90
(c) It varies
(d) None of the above

	
	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								System.out.println(2.00	-	1.10);	
				}	
}	

13 17-214

(a)	0.9	
(b)	0.90	
(c)	It	varies	
(d)	None	of	the	above:	0.8999999999999999	

Decimal	values	can't	be	represented	exactly	
by float or double	

What	does	it	print?	

14 17-214

Another	look	

public	class	Change	{	
				public	static	void	main(String	args[])	{	
								System.out.println(2.00	-	1.10);	
				}	
}	

15 17-214

How	do	you	fix	it?	

//	You	could	fix	it	this	way...	
import	java.math.BigDecimal;	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								System.out.println(
												new	BigDecimal("2.00").subtract(
																new	BigDecimal("1.10")));	
				}	
}	

	
//	...or	you	could	fix	it	this	way	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								System.out.println(200	-	110);	
				}	
}	

Prints	0.90	

Prints	90	

16 17-214

The	moral	

•  Avoid float and double	where	exact	answers	are	required	
–  For	example,	when	dealing	with	money	

•  Use	BigDecimal,	int,	or	long	instead	

17 17-214

2.	“A	Change	is	Gonna	Come”	

If	you	pay	$2.00	for	a	gasket	that	costs	
$1.10,	how	much	change	do	you	get?	

	
import	java.math.BigDecimal;	
	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								BigDecimal	payment	=	new	BigDecimal(2.00);	
								BigDecimal	cost	=	new	BigDecimal(1.10);	
								System.out.println(payment.subtract(cost));	
				}	
}	

18 17-214

What	does	it	print?	

import	java.math.BigDecimal;	
	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								BigDecimal	payment	=	new	BigDecimal(2.00);	
								BigDecimal	cost	=	new	BigDecimal(1.10);	
								System.out.println(payment.subtract(cost));	
				}	
}	

(a)	0.9	
(b)	0.90	
(c)	0.8999999999999999	
(d)	None of the above

19 17-214

(a)	0.9	
(b)	0.90	
(c)	0.8999999999999999	
(d)	None	of	the	above:	
0.89999999999999991118215802998747
6766109466552734375	

We	used	the	wrong	BigDecimal	constructor	

What	does	it	print?	

20 17-214

Another	look	

	
import	java.math.BigDecimal;	
	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								BigDecimal	payment	=	new	BigDecimal(2.00);	
								BigDecimal	cost	=	new	BigDecimal(1.10);	
								System.out.println(payment.subtract(cost));	
				}	
}	

The	spec	says:	
 public	BigDecimal(double	val)	
Translates	a	double	into	a	BigDecimal	which	is	the	
exact	decimal	representation	of	the	double's	binary	
floating-point	value.		

21 17-214

How	do	you	fix	it?	

import	java.math.BigDecimal;	
	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								BigDecimal	payment	=	new	BigDecimal("2.00");	
								BigDecimal	cost	=	new	BigDecimal("1.10");	
								System.out.println(payment.subtract(cost));	
				}	
}	

Prints	0.90	

22 17-214

The moral

•  Use new	BigDecimal(String),
not new	BigDecimal(double)	

•  BigDecimal.valueOf(double) is better, but not
perfect
–  Use it for non-constant values.

•  For API designers
–  Make it easy to do the commonly correct thing
–  Make it hard to misuse
–  Make it possible to do exotic things

23 17-214

Today:		Toward	software	engineering	in	practice	

•  Two	puzzlers	
•  Software	engineering	for	teams	

–  Challenges	of	working	as	a	team	
–  Tools	and	processes	for	teams	

•  Branch-based	development,	et	al.	

24 17-214

Software	engineering	is	inherently	collaborative	

25 17-214

Challenges	of	working	as	a	team:	

26 17-214

Challenges	of	working	as	a	team:	Aligning	expectations	

•  How	does	the	team	make	decisions?	
•  How	do	you	divide	the	work?	
•  Does	the	team	share	the	same	goals	and	incentives?	
•  What	happens	when	work	isn’t	completed	as	expected?	
•  When	do	team	members	like	to	work?	
•  What	other	commitments	do	your	team	members	have?	
•  Where	will	you	get	the	work	done?	
•  ...	

27 17-214

Decide	what	to	build,	then	design	the	API	

//	A	collection	of	elements	(root	of	the	collection	hierarchy)	
public	interface	Collection<E>	{	
	
				//	Ensures	that	collection	contains	o	
				boolean	add(E	o);	
	
				//	Removes	an	instance	of	o	from	collection,	if	present	
				boolean	remove(Object	o);	
	
				//	Returns	true	iff	collection	contains	o	
				boolean	contains(Object	o)	;	
	
				//	Returns	number	of	elements	in	collection	
				int	size()	;	
	
				//	Returns	true	if	collection	is	empty	
				boolean	isEmpty();	
	
				...		//	Remainder	omitted	
}	

Basic	Process:	
(1)  Determine	minimal	

feature	set	
(2)  Draw	UML	on	the	

whiteboard.	
(3)  Sketch	out	your	API	on	

paper	
(4)  Write	example	code	
(5)  Review	
(6)  Repeat	

28 17-214

Break	up	tasks	into	GitHub	Issues	

Issues	can	represent	both	tasks	
and	bugs	that	need	to	be	fixed.	
	
Issues	should	be:	
●  a	reasonable	chunk	of	work	
●  focused	and	cohesive	

29 17-214

Break	up	tasks	into	GitHub	Issues	

30 17-214

Use	labels	to	indicate	priority	and	differentiate	bugs	from	features	

31 17-214

Consider	using	milestones	(e.g.,	HW5a,	HW5b)	

32 17-214

How	does	a	large	software	project	
get	to	be	one	year	late?	

33 17-214

How	does	a	large	software	project	
get	to	be	one	year	late?	
One	day	at	a	time.	
— 	Fred	Brooks,The	Mythical	Man-Month	

https://en.wikipedia.org/wiki/The_Mythical_Man-Month

34 17-214

Use	a	simple	Kanban	board	to	measure	progress	

35 17-214

Use	a	simple	Kanban	board	to	measure	progress	

36 17-214

Single-branch	development	doesn’t	scale	to	teams	

Master	

37 17-214

Use	simple	branch-based	development	

Create	a	new	branch	for	each	feature.	
●  allows	parallel	development	
●  no	dealing	with	half-finished	code	
●  no	merge	conflicts!	

Every	commit	to	“master”	should	pass	
your	CI	checks.	

38 17-214

Git,	practically	

•  Git	stores	each	version	as	a	snapshot	
•  If	files	have	not	changed,	only	a	link	to	the	previous	file	is	stored	
•  Each	version	is	referred	by	the	SHA-1	hash	of	the	contents	

39 17-214

git	commit	

Graphics	by	https://learngitbranching.js.org	

40 17-214

git	branch	newImage	

41 17-214

git	commit	

42 17-214

git	checkout	newImage;	git	commit	

43 17-214

Summary	

•  Identify	and	discuss	risks	within	your	team	
–  Get	to	know	your	teammates,	and	agree	on	your	process	

•  Use	standard	tools	to	improve	your	process	

