Principles of Software Construction:
Objects, Design, and Concurrency

Part 3: Concurrency

Introduction to concurrency

Josh Bloch Charlie Garrod

g:lm'nvgiv Mellon University
School of Computer Science
®
institute for
I S SOFTWARE
RESEARCH
®

institute for
- SOFTWA
17-214 1 RESEARCH

Administrivia

e HW 5a due 9am tomorrow

* Presentations in recitation tomorrow

 Reading due today, Java Concurrency In Practice, Sections 11.3-4
« Midterm 2 has been graded; Grades will be released after class

[]
institute
17-214 2 e
RESEARCH

Key concepts from last Thursday

[]
institute for
_ SOFTWA
17-214 3 RESEARCH

Challenges of working as a team: Aligning expectations

- How do we make decisions?

[]
institute |
17-214 4 SOFTWARE
RESEARCH

Use simple branch-based development

Master

N2

1\

Create a new branch for each feature.

® allows parallel development

® no dealing with half-finished code

® no merge conflicts!

17-214

Commits on Oct 20, 2019

Added file checking methods to FileSystem (#28) ...
@ ChrisTimperley committed yesterday v/

Commits on Oct 19, 2019

Implemented basic filesystem API (#27) .
B ChrisTimperley committed 2 days ago v/

Added workaround for shell calls without both stdout and stderr (#26) -

@ ChrisTimperley committed 2 days ago v/

Added Container class for holding Docker container details (#24) ..
@ ChrisTimperley committed 3 days ago v/

Commits on Oct 13, 2019

Added DockerDaemon for maintaining connnections to daemon (fixes #21) (... '«

@ ChrisTimperley committed & days ago v/

Added environ method to Shell (#20) ..
@ ChrisTimperley committed 9 days ago v/

Added basic popen to shell (fixes #6) (#19) ..
@ ChrisTimperley committed 9 days ago v/

Add encoding and text parameters to Shell commands (fixes #9) (#17) ..
@ ChrisTimperley committed 9 days ago v/

Verified B da32eda
Verified B 73d331e
Verified B o6aa0se
Verified B 05c61e8
Verified X 79adse7
Verified B 4494afa
Verified B | cf79374
Verified E— ceflldc

Every commit to “master” should pass

your Cl checks.

build | passing

institute for
5 | S SOFTWARE
RESEARCH

<

<

<

<

<

<

<

<

Today’s lecture: concurrency motivation and primitives

e Why concurrency?
— Motivation, goals, problems, ...

* Concurrency primitives in Java

 Coming soon (not today):
— Higher-level abstractions for concurrency
— Program structure for concurrency
— Frameworks for concurrent computation

[]
institute for
- SOFTWA
17-214 6 RESEARCH

Moore’s Law (1965) — number of transistors on a chip
doubles every two years

50,000,000,000

10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000
50,000,000

10,000,000
5,000,000

Transistor count

1,000,000
500,000

100,000
50,000

10,000
5,000

1,000

17-214

72-core Xeon Phl
SPARC M

IBM 213 Storage Comrolier
18-core Xeon Haswell-E5
Xbox One main SoC \
10-core Core i7 Broadwell-E

-
61-core Xeon Phi 8 8
Qualcomm Snapdragon

12-core POWER,;
© oDuaI core + GPU Iris Cogre i7 Broadwell-U

8-core Xeon Nehalem-EX~
Six-core Xeon 74000 ‘ 8

2 Quad-core + GPU GT2 Core i7 Skylake K
S Quad core + GPU Core i7 Haswell

Dual-core Itanium Q
onerg o 8098
Apple A7 (dual-core ARM64 "mobile SoC")
Core i7 (Quad)
AMD K10 quad core 2M L3

Core 2 Duo Wolfdale
§80{|e Duo Conroe

Centriq 2400 ©GC2IPU
32 core AMD Epyc
Apple A12X Bionic
Tegra Xavier SoC
o 8 Oualcomm Snapdragon 8cx/SCX8180
H|S|I|con Kirin 980 + Apple A12 Bionic
“HiSilicon Kirin 710

Pentium D Presler
Itamum 2 wsth

Itanium 2 Madlson 6M°
Pentium D Smithfield«

Itanium 2 McKinley€p Core 2 Duo Wolfdale 3M

Pentium 4 Prescott- 2M0 ‘\QCore 2 Duo Allendale

Pentium 4 Cedar Mill
AMD K8 0F’emxum 4 Prescott

Pentium 4 Northwoo
Barton
Pentium 4 Willamette ¢y °d° ©

Pent Il Tualat b dhald
entium ualatin
Pentium Il Mobile Dixon, !

QARM Cortex-A9

AMD K7 ©Pentium Il Coppermine
AMD Ke-lil
AMD K6 i
§ B LS
F’enmmProo Pentium Il
Klamath
Pentrum° AMD K5
SA=110
Intel 80486° °R4000
TERe Lo 8
Intel 80386° Intel QARM 3
Motorola 68020 ¢ L) ¢
DEC WRL
— ImelgUQBB MultiTitan AgM
68000
b @ intel 80186 ALl
Intel 80864 €pIntel 8088 V% o, FgAAfiM 2 AR°M 6
Motorola 65C816 N°
TMS 1000 ZilogZ8Q 6809 2 NCAOT6
L2 WDC
RCAJ802 Qncigoss OOC02
Intel 800, $iniel 8080
PN Motorola %A5OOS Technology
Intel 4004 ©890
PRSP O N Q° @
N N N N N N N N N N N N N N N Y»Y P QP P P QP P P P @

institute for
SOFTWARE
RESEARCH

CPU Performance and Power Consumption

 Dennard Scaling (1974) — each time you double transistor density:
— Speed (frequency) goes up by about 40% (Why?)
— While power consumption of the chip stays constant (proportional to area)

* Combined w/ Moore’s law, every 4 years the number of transistors
quadruples, speed doubles, and power consumption stays constant

* It was great while it lasted

— Came to a grinding halt around 2004 due to leakage currents @
— More power required at higher frequency, generating more heat
— There’s a limit to how much heat a chip can tolerate

[]
institute
17-214 s e
RESEARCH

fix the symptom

One option

Dissipate the heat

institute for
SOFTWARE
RESEARCH

Hi:

17-214

One option: fix the symptom

e Better(?): Dissipate the heat with liquid nitrogen

by Paul Lilly — Monday, December 16, 2019, 10:14 AM EDT

AMD Ryzen 9 3900X |2-Core Beast Chip Hits 5.6GHz To Claim
World Record

_—
y -
5

[

2
-
-

institute for
17-214 10

42 Years of Microprocessor Trend Data

Transistors
(thousands)

| Single-Thread
Performance 3
(SpecINT x 107)

Frequency (MHz)

Typical Power
1 (Watts)

Number of
Logical Cores

0 0 v % s 000
10 —-‘---Q ------------) T U S G0 4N SN HINOND S oo .
| | | |

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

institute for
17-214 11

Concurrency then and now

* In the past, multi-threading just a convenient abstraction
— GUI design: event dispatch thread
— Server design: isolate each client's work
— Workflow design: isolate producers and consumers

* Now: required for scalability and performance

[]
institute for
17-214 12

We are all concurrent programmers

e Javais inherently multithreaded
* To utilize modern processors, we must write multithreaded code

 Good news: a lot of it is written for you
— Excellent libraries exist (e.g., java.util.concurrent)

* Bad news: you still must understand fundamentals
— ...to use libraries effectively
— ...to debug programs that make use of them

[]
institute for
17-214 13

Aside: Concurrency vs. parallelism, visualized

* Concurrency without parallelism:

Thread1 [N —
Thread2 I I
Thread3 I

* Concurrency with parallelism:

Threadl |
Thread? |
Thread3 I

[]
institute for
17-214 14

Basic concurrency in Java

* Aninterface representing a task
public interface Runnable {
void run();

e A class to execute a task in a CPU thread

public class Thread {
public Thread(Runnable task);
public void start();
public void join();

17-214

15

institute for
SOFTWARE
RESEARCH

Example: Money-grab (1)

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;

¥

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;

¥

public long balance() {
return balance;

¥

[]
institute for
17-214 16

Example: Money-grab (2)

What would you expect this program to print?

public static void main(String[] args) throws InterruptedException {
BankAccount bugs = new BankAccount(1090);
BankAccount daffy = new BankAccount(1090);

Thread bugsThread = new Thread(()-> {
for (int 1 = 0; 1 < 1 000 000; i++)
transferFrom(daffy, bugs, 100);
1)

Thread daffyThread = new Thread(()-> {
for (int i = 0; i < 1 000 000; i++)
transferFrom(bugs, daffy, 100);

});

bugsThread.start(); daffyThread.start();
bugsThread.join(); daffyThread.join();
System.out.println(bugs.balance() + daffy.balance());

[]
institute for
17-214 17

What went wrong?

* Daffy & Bugs threads had a race condition for shared data
— Transfers did not happen in sequence

e Reads and writes interleaved randomly

— Random results ensued

[]
institute for
17-214 18

The challenge of concurrency control

* Not enough concurrency control: safety failure

— Incorrect computation

 Too much concurrency control: liveness failure
— Possibly no computation at all (deadlock or livelock)

[]
institute for
17-214 19

Shared mutable state requires concurrency control

* Three basic choices:
1. Don't mutate: share only immutable state
2. Don'tshare: isolate mutable state in individual threads
3. If you must share mutable state: synchronize to achieve safety

[]
institute for
17-214 20

An easy fix:

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;

¥

static synchronized void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;

¥

public long balance() {
return balance;

¥

[]
institute for
17-214 21

Concurrency control with Java’s intrinsic locks

 synchronized (lock) { .. }
— Synchronizes entire block on object 1ock; cannot forget to unlock
— Intrinsic locks are exclusive: One thread at a time holds the lock
— Intrinsic locks are reentrant: A thread can repeatedly get same lock

Thread [N, e
Thread2 NNV -
Thread3 — I

[]
institute for
17-214 22

Concurrency control with Java’s intrinsic locks

 synchronized (lock) { .. }

— Synchronizes entire block on object 1ock; cannot forget to unlock

— Intrinsic locks are exclusive: One thread at a time holds the lock

— Intrinsic locks are reentrant: A thread can repeatedly get same lock
 synchronized on aninstance method

— Equivalentto synchronized (this) { .. } for entire method
 synchronized on a static method in class Foo

— Equivalentto synchronized (Foo.class) { .. } forentire method

Thread [N, e
Thread2 NNV -
Thread3 — I

[]
institute for
17-214 23

Another example: serial number generation
What would you expect this program to print?

public class SerialNumber {
private static long nextSerialNumber = 0;

public static long generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException {
Thread threads[] = new Thread[5];
for (int i = @; 1 < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 1 000 000; j++)
generateSerialNumber();

});
threads[i].start();
}
for(Thread thread : threads)

thread.join();
System.out.println(generateSerialNumber());

[]
institute for
17-214 24

What went wrong?

* An action is atomic if it is indivisible
— Effectively, it happens all at once
* No effects of the action are visible until it is complete
* No other actions have an effect during the action

e Java’'s ++ (increment) operator is not atomic!
— It reads a field, increments value, and writes it back

* If multiple calls to generateSerialNumber see the same
value, they generate duplicates

[]
institute for
17-214 25

Again, the fix is easy

public class SerialNumber {
private static long nextSerialNumber = 0;

public static synchronized long generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException {
Thread threads[] = new Thread[5];
for (int i = @; 1 < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 1 000 000; j++)
generateSerialNumber();

});
threads[i].start();
}
for(Thread thread : threads)

thread.join();
System.out.println(generateSerialNumber());

[]
institute for
17-214 26

But you can do better!
java.util.concurrent isyour friend

public class SerialNumber {
private static AtomicLong nextSerialNumber = new AtomiclLong();
public static long generateSerialNumber() {
return nextSerialNumber.getAndIncrement();

}

public static void main(String[] args) throws InterruptedException{
Thread threads[] = new Thread[5];
for (int i = @; 1 < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 1 000 000; j++)
generateSerialNumber();

})s
threads[i].start();

¥
for(Thread thread : threads) thread.join();

System.out.println(generateSerialNumber());

[]
institute for
17-214 27

Some actions agre atomic
Precondition: Thread A: Thread B:

int 1 = 7; i = 42; ans = 1i;

 What are the possible values for ans?

[]
institute for
17-214 28

Some actions are atomic

Precondition: Thread A: Thread B:
int 1 = 7; i = 42; ans = 1i;

 What are the possible values for ans?

i:

[]
institute for
17-214 29

Some actions are atomic

Precondition: Thread A: Thread B:
int 1 = 7; 1 = 42; ans = 1i;

 What are the possible values for ans?

i:

i:

* |nJava:
— Reading an int variable is atomic
— Writing an int variable is atomic

— —

— Thankfully,|ans: is not possible

— —

[]
institute for
17-214 30

Bad news: some simple actions are not atomic

* Consider a single 64-bit long value

— Concurrently:

* Thread A writing high bits and low bits
* Thread B reading high bits and low bits

Precondition: Thread A: Thread B:
long 1 = 10 000 00O 000; i = 42; ans = 1i;
ans: (10,000,000,000)
. - All are
ans: (42) possible!
ans: (10,000,000,042)

[]
institute for
17-214 31

Yet another example: cooperative thread termination
How long would you expect this program to run?

public class StopThread {
private static boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested)
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
stopRequested = true;

[]
institute for
17-214 32

What went wrong?

* In the absence of synchronization, there is no guarantee as to
when, if ever, one thread will see changes made by another

* JVMs can and do perform this optimization (“hoisting”):
while (!done)
/* do something */ ;
becomes:
if (!done)
while (true)
/* do something */ ;

[]
institute for
17-214 33

Why is synchronization required for communication
among threads?

. Naively: Process
— Thread state shared in memory Thread Thread
\ /

* A (slightly) more accurate view:

— Separate state stored in registers and caches, even if shared

Process

Thread Thread

“~ Pl

[]
institute for
17-214 34

How do you fix it?

public class StopThread {
private static boolean stopRequested;
private static synchronized void requestStop() {

stopRequested = true;

}

private static synchronized boolean stopRequested() {
return stopRequested;

}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {

while (!stopRequested())
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(10);
requestStop();

institute for
17-214 35

A better(?) solution
volatile is synchronization without mutual exclusion

public class StopThread {
private static volatile boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested)
/* Do something */ ;

0¥
backgroundThread.start();

TimeUnit.SECONDS.sleep(10);
stopRequested = true;

institute for
17-214 36

Summary

Like it or not, you’re a concurrent programmer

|deally, avoid shared mutable state
— If you can’t avoid it, synchronize properly

Even atomic operations require synchronization
— e.g., stopRequested = true

Some things that look atomic aren’t (e.g., val++)

[]
institute for
17-214 37

