
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Part 3: Concurrency

Introduction to concurrency

Josh Bloch Charlie Garrod

217-214

Administrivia

• HW 5a due 9am tomorrow

• Presentations in recitation tomorrow

• Reading due today, Java Concurrency In Practice, Sections 11.3-4

• Midterm 2 has been graded; Grades will be released after class

317-214

Key concepts from last Thursday

417-214

Challenges of working as a team: Aligning expectations

• How do we make decisions?

517-214

Use simple branch-based development

Create a new branch for each feature.
● allows parallel development
● no dealing with half-finished code
● no merge conflicts!

Every commit to “master” should pass
your CI checks.

617-214

Today’s lecture: concurrency motivation and primitives

• Why concurrency?
– Motivation, goals, problems, …

• Concurrency primitives in Java

• Coming soon (not today):
– Higher-level abstractions for concurrency

– Program structure for concurrency

– Frameworks for concurrent computation

717-214

Moore’s Law (1965) – number of transistors on a chip
doubles every two years

817-214

CPU Performance and Power Consumption

• Dennard Scaling (1974) – each time you double transistor density:
– Speed (frequency) goes up by about 40% (Why?)

– While power consumption of the chip stays constant (proportional to area)

• Combined w/ Moore’s law, every 4 years the number of transistors
quadruples, speed doubles, and power consumption stays constant

• It was great while it lasted
– Came to a grinding halt around 2004 due to leakage currents ☹️

– More power required at higher frequency, generating more heat

– There’s a limit to how much heat a chip can tolerate

917-214

One option: fix the symptom

• Dissipate the heat

1017-214

One option: fix the symptom

• Better(?): Dissipate the heat with liquid nitrogen

1117-214

1217-214

Concurrency then and now

• In the past, multi-threading just a convenient abstraction
– GUI design: event dispatch thread

– Server design: isolate each client's work

– Workflow design: isolate producers and consumers

• Now: required for scalability and performance

1317-214

We are all concurrent programmers

• Java is inherently multithreaded

• To utilize modern processors, we must write multithreaded code

• Good news: a lot of it is written for you
– Excellent libraries exist (e.g., java.util.concurrent)

• Bad news: you still must understand fundamentals
– …to use libraries effectively

– …to debug programs that make use of them

1417-214

Aside: Concurrency vs. parallelism, visualized

• Concurrency without parallelism:

• Concurrency with parallelism:

Thread1

Thread2

Thread3

Thread1

Thread2

Thread3

1517-214

Basic concurrency in Java

• An interface representing a task
public interface Runnable {

void run();

}

• A class to execute a task in a CPU thread
public class Thread {

public Thread(Runnable task);

public void start();

public void join();

…

}

1617-214

Example: Money-grab (1)

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;

}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {

source.balance -= amount;
dest.balance += amount;

}

public long balance() {
return balance;

}
}

1717-214

Example: Money-grab (2)
What would you expect this program to print?

public static void main(String[] args) throws InterruptedException {
BankAccount bugs = new BankAccount(100);
BankAccount daffy = new BankAccount(100);

Thread bugsThread = new Thread(()-> {
for (int i = 0; i < 1_000_000; i++)

transferFrom(daffy, bugs, 100);
});

Thread daffyThread = new Thread(()-> {
for (int i = 0; i < 1_000_000; i++)

transferFrom(bugs, daffy, 100);
});

bugsThread.start(); daffyThread.start();
bugsThread.join(); daffyThread.join();
System.out.println(bugs.balance() + daffy.balance());

}

1817-214

What went wrong?

• Daffy & Bugs threads had a race condition for shared data
– Transfers did not happen in sequence

• Reads and writes interleaved randomly
– Random results ensued

1917-214

The challenge of concurrency control

• Not enough concurrency control: safety failure
– Incorrect computation

• Too much concurrency control: liveness failure
– Possibly no computation at all (deadlock or livelock)

2017-214

Shared mutable state requires concurrency control

• Three basic choices:
1. Don't mutate: share only immutable state

2. Don't share: isolate mutable state in individual threads

3. If you must share mutable state: synchronize to achieve safety

2117-214

An easy fix:

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;

}

static synchronized void transferFrom(BankAccount source,
BankAccount dest, long amount) {

source.balance -= amount;
dest.balance += amount;

}

public long balance() {
return balance;

}
}

2217-214

Concurrency control with Java’s intrinsic locks

• synchronized (lock) { … }
– Synchronizes entire block on object lock; cannot forget to unlock

– Intrinsic locks are exclusive: One thread at a time holds the lock

– Intrinsic locks are reentrant: A thread can repeatedly get same lock

Thread1

Thread2

Thread3

2317-214

Concurrency control with Java’s intrinsic locks

• synchronized (lock) { … }
– Synchronizes entire block on object lock; cannot forget to unlock

– Intrinsic locks are exclusive: One thread at a time holds the lock

– Intrinsic locks are reentrant: A thread can repeatedly get same lock

• synchronized on an instance method
– Equivalent to synchronized (this) { … } for entire method

• synchronized on a static method in class Foo
– Equivalent to synchronized (Foo.class) { … } for entire method

Thread1

Thread2

Thread3

2417-214

Another example: serial number generation
What would you expect this program to print?

public class SerialNumber {
private static long nextSerialNumber = 0;

public static long generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException {
Thread threads[] = new Thread[5];
for (int i = 0; i < threads.length; i++) {

threads[i] = new Thread(() -> {
for (int j = 0; j < 1_000_000; j++)

generateSerialNumber();
});
threads[i].start();

}
for(Thread thread : threads)

thread.join();
System.out.println(generateSerialNumber());

}
}

2517-214

What went wrong?

• An action is atomic if it is indivisible
– Effectively, it happens all at once

• No effects of the action are visible until it is complete

• No other actions have an effect during the action

• Java’s ++ (increment) operator is not atomic!
– It reads a field, increments value, and writes it back

• If multiple calls to generateSerialNumber see the same
value, they generate duplicates

2617-214

Again, the fix is easy

public class SerialNumber {
private static long nextSerialNumber = 0;

public static synchronized long generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException {
Thread threads[] = new Thread[5];
for (int i = 0; i < threads.length; i++) {

threads[i] = new Thread(() -> {
for (int j = 0; j < 1_000_000; j++)

generateSerialNumber();
});
threads[i].start();

}
for(Thread thread : threads)

thread.join();
System.out.println(generateSerialNumber());

}
}

2717-214

But you can do better!
java.util.concurrent is your friend

public class SerialNumber {
private static AtomicLong nextSerialNumber = new AtomicLong();
public static long generateSerialNumber() {

return nextSerialNumber.getAndIncrement();
}

public static void main(String[] args) throws InterruptedException{
Thread threads[] = new Thread[5];
for (int i = 0; i < threads.length; i++) {

threads[i] = new Thread(() -> {
for (int j = 0; j < 1_000_000; j++)

generateSerialNumber();
});
threads[i].start();

}
for(Thread thread : threads) thread.join();
System.out.println(generateSerialNumber());

}
}

2817-214

Some actions are atomic

• What are the possible values for ans?

Thread A:

ans = i;

Thread B:

int i = 7;

Precondition:

i = 42;

2917-214

• What are the possible values for ans?

Some actions are atomic

Thread A:

ans = i;

Thread B:Precondition:

00000…00101111ans:

00000…00000111i:

00000…00101010i:

…

i = 42;int i = 7;

3017-214

• What are the possible values for ans?

• In Java:
– Reading an int variable is atomic

– Writing an int variable is atomic

– Thankfully, is not possible

Some actions are atomic

Thread A:

ans = i;

Thread B:Precondition:

00000…00101111ans:

00000…00000111i:

00000…00101010i:

…

i = 42;int i = 7;

3117-214

Bad news: some simple actions are not atomic

• Consider a single 64-bit long value

– Concurrently:

• Thread A writing high bits and low bits

• Thread B reading high bits and low bits

high bits low bits

Thread A:

ans = i;

Thread B:

long i = 10_000_000_000;

Precondition:

i = 42;

01001…00000000ans:

00000…00101010ans:

01001…00101010ans:

(10,000,000,000)

(42)

(10,000,000,042)

All are
possible!

3217-214

Yet another example: cooperative thread termination
How long would you expect this program to run?

public class StopThread {
private static boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {

while (!stopRequested)
/* Do something */ ;

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
stopRequested = true;

}
}

3317-214

What went wrong?

• In the absence of synchronization, there is no guarantee as to
when, if ever, one thread will see changes made by another

• JVMs can and do perform this optimization (“hoisting”):
while (!done)

/* do something */ ;

becomes:
if (!done)

while (true)

/* do something */ ;

3417-214

Why is synchronization required for communication
among threads?

• Naively:
– Thread state shared in memory

• A (slightly) more accurate view:
– Separate state stored in registers and caches, even if shared

Process

Thread

Memory

Thread

Process

Thread

Cache

Thread

Cache

Memory

3517-214

How do you fix it?

public class StopThread {
private static boolean stopRequested;
private static synchronized void requestStop() {

stopRequested = true;
}
private static synchronized boolean stopRequested() {

return stopRequested;
}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {

while (!stopRequested())
/* Do something */ ;

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(10);
requestStop();

}
}

3617-214

A better(?) solution
volatile is synchronization without mutual exclusion

public class StopThread {
private static volatile boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {

while (!stopRequested)
/* Do something */ ;

});
backgroundThread.start();

TimeUnit.SECONDS.sleep(10);
stopRequested = true;

}
}

3717-214

Summary

• Like it or not, you’re a concurrent programmer

• Ideally, avoid shared mutable state
– If you can’t avoid it, synchronize properly

• Even atomic operations require synchronization
– e.g., stopRequested = true

• Some things that look atomic aren’t (e.g., val++)

