Principles of Software Construction:
Objects, Design, and Concurrency

Part 3: Concurrency
Concurrency, Part 2

Josh Bloch Charlie Garrod

g:lm'nvgiv Mellon University
School of Computer Science
. s .
institute for
I S SOFTWARE
RESEARCH

[]
institute
17-214 1 e
RESEARCH

Administrivia

e Homework 5b due Tuesday night

* Design a framework for consideration as a “best framework!”
— And let us know that you want your framework considered

e It’s fun, and can lead to good things

[]
institute
17-214 2 e
RESEARCH

Key concepts from last Tuesday

[]
institute for
_ SOFTWA
17-214 3 RESEARCH

42 Years of Microprocessor Trend Data

Transistors
(thousands)

| Single-Thread
Performance 3
(SpecINT x 107)

Frequency (MHz)

Typical Power
1 (Watts)

Number of
Logical Cores

0 0 v % s 000
10 —-‘---Q ------------) T U S G0 4N SN HINOND S oo .
| | | |

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

institute |
17-214 4 SOFTWARE
RESEARCH

A concurrency bug with an easy fix

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;

¥

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;

¥

public long balance() {
return balance;

¥

[]
institute
17-214 5 e
RESEARCH

Concurrency control with Java’s intrinsic locks

 synchronized (lock) { .. }

— Synchronizes entire block on object 1ock; cannot forget to unlock

— Intrinsic locks are exclusive: One thread at a time holds the lock

— Intrinsic locks are reentrant: A thread can repeatedly get same lock
 synchronized on aninstance method

— Equivalentto synchronized (this) { .. } for entire method
 synchronized on a static method in class Foo

— Equivalentto synchronized (Foo.class) { .. } forentire method

Thread [N, e
Thread2 NNV -
Thread3 — IR

[]
institute |
17-214 6 SOFTWARE
RESEARCH

Another concurrency bug: serial number generation

public class SerialNumber {
private static long nextSerialNumber = 0;

public static long generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException {
Thread threads[] = new Thread[5];
for (int i = @; 1 < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 1 000 000; j++)
generateSerialNumber();

});
threads[i].start();
}
for(Thread thread : threads)

thread.join();
System.out.println(generateSerialNumber());

institute |
17-214 7 SOFTWARE
RESEARCH

What went wrong?

* An action is atomic if it is indivisible
— Effectively, it happens all at once
* No effects of the action are visible until it is complete
* No other actions have an effect during the action

e Java’s ++ (increment) operator is not atomic!
— It reads a field, increments value, and writes it back

* If multiple calls to generateSerialNumber see the same
value, they generate duplicates

[]
institute
17-214 s e
RESEARCH

A third concurrency bug: cooperative thread termination

public class StopThread {
private static boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested)
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
stopRequested = true;

®
institute f
17-214 9 SOFTWARE
RESEARCH

What went wrong?

* In the absence of synchronization, there is no guarantee as to
when, if ever, one thread will see changes made by another

* JVMs can and do perform this optimization (“hoisting”):
while (!done)
/* do something */ ;
becomes:
if (!done)
while (true)
/* do something */ ;

[]
institute for
17-214 10

Pop quiz — what’s wrong with this “fix”?

public class StopThread {
private static boolean stopRequested;
private static synchronized void requestStop() {
stopRequested = true;
}

private static boolean stopRequested() {
return stopRequested;
}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested())
/* Do something */ ;

})s
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
requestStop();

institute for
17-214 11

You must lock write and read!
Otherwise, locking accomplishes nothing

public class StopThread {
private static boolean stopRequested;
private static synchronized void requestStop() {
stopRequested = true;
}

private static synchronized boolean stopRequested() {
return stopRequested;
}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested())
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
requestStop();

institute for
17-214 12

Today

 More basic concurrency in Java
— Some challenges of concurrency

e Still coming soon:
— Higher-level abstractions for concurrency
— Program structure for concurrency
— Frameworks for concurrent computation

institute for
17-214 13

A liveness problem: poor performance

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;

¥

static synchronized void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;

¥

public synchronized long balance() {
return balance;

¥

[]
institute for
17-214 14

A liveness problem: poor performance

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
synchronized(BankAccount.class) {
source.balance -= amount;
dest.balance += amount;

}
}

public synchronized long balance() {
return balance;

¥

[]
institute for
17-214 15

A proposed fix: lock splitting

Does this work?

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
synchronized(source) {
synchronized(dest) {
source.balance -= amount;
dest.balance += amount;

[]
institute for
17-214 16

A liveness problem: deadlock

* A possible interleaving of operations:
— bugsThread locks the daffy account
— daffyThread locks the bugs account
— bugsThread waits to lock the bugs account...
— daffyThread waits to lock the daffy account...

waits-for

waits-for

[]
institute for
17-214 17

A liveness problem: deadlock

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;

}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
synchronized(source) {
synchronized(dest) {
source.balance -= amount;
dest.balance += amount;

institute for
17-214 18

Avoiding deadlock

* The waits-for graph represents dependencies between threads

— Each node in the graph represents a thread
— An edge T1->T2 represents that thread T1 is waiting for a lock T2 owns

 Deadlock has occurred iff the waits-for graph contains a cycle
 One way to avoid deadlock: locking protocols that avoid cycles

®
a0 @
\

>

S

[]
institute for
17-214 19

Avoiding deadlock by ordering lock acquisition

public class BankAccount {
private long balance;
private final long id = SerialNumber.generateSerialNumber();

public BankAccount(long balance) {
this.balance = balance;

}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
BankAccount first = (source.id < dest.id) ? source : dest;
BankAccount second = (first == source) ? dest : source;
synchronized (first) {
synchronized (second) {
source.balance -= amount;
dest.balance += amount;

institute for
17-214 20

Another subtle problem: The lock object is exposed

public class BankAccount {
private long balance;
private final long id = SerialNumber.generateSerialNumber();

public BankAccount(long balance) {
this.balance = balance;

}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
BankAccount first = (source.id < dest.id) ? source : dest;
BankAccount second = (first == source) ? dest : source;
synchronized (first) {
synchronized (second) {
source.balance -= amount;
dest.balance += amount;

institute for
17-214 21

An easy fix: Use a private lock

public class BankAccount {
private long balance;

private final long id = SerialNumber.generateSerialNumber();

private final Object lock = new Object();

public BankAccount(long balance) { this.balance = balance; }

static void transferFrom(BankAccount source,

BankAccount dest, long amount) {
BankAccount first = source.id < dest.id ? source :
BankAccount second = first == source ? dest : source;

synchronized (first.lock) {
synchronized (second.lock) {
source.balance -= amount;
dest.balance += amount;

17-214 22

Concurrency and information hiding

* Encapsulate an object’s state — Easier to implement invariants
— Encapsulate synchronization — Easier to implement synchronization policy

[]
institute for
17-214 23

An aside: Java Concurrency in Practice annotations

@ThreadSafe public class BankAccount {
@GuardedBy("lock") private long balance;

private final long id = SerialNumber.generateSerialNumber();
private final Object lock = new Object();

public BankAccount(long balance) { this.balance = balance; }

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
BankAccount first = source.id < dest.id ? source : dest;
BankAccount second = first == source ? dest : source;
synchronized (first.lock) {
synchronized (second.lock) {
source.balance -= amount;
dest.balance += amount;

institute for
17-214 24

An aside: Java Concurrency in Practice annotations

@ThreadSafe
@NotThreadSafe
@GuardedBy
@Immutable

[]
institute for
17-214 25

duterlude - Ye Olde Puzzler

Puzzler: “Racy Little Number”

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class LittleTest {
int number;

@Test
public void test() throws InterruptedException {
humber = 0;
Thread t = new Thread(() -> {
assertEquals(2, number);
1)
number = 1;
t.start();
number++;
t.join();

institute for
17-214 27

How often does this test pass?

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class LittleTest {
int number;

@Test
public void test() throws InterruptedException {

humber = 0;
Thread t = new Thread(() -> {
assertEquals(2, number);

r}13r,nber = 1; (a) It always fails
Eu;EZEEQ (b) It sometimes passes
} t-Join(); (c) It always passes
} (d) It always hangs

[]
institute
17-214 28 e
RESEARCH

How often does this test pass?

(a) It always fails
(b) It sometimes passes
(c) It always passes — but it tells us nothing

(d) It always hangs

JUnit doesn’t see assertion failures in other threads

[]
institute for
17-214 29

Another look

import org.junit.*;
import static org.junit.Assert.*;

public class LittleTest {
int number;

@Test
public void test() throws InterruptedException {
nhumber = 0;
Thread t = new Thread(() -> {
assertEquals(2, number); // JUnit never sees exception!
1)

nhumber = 1;
t.start();
number++;
t.join();

institute for
17-214 30

How do you fix it? (1)

17-214

// Keep track of assertion failures during test
volatile Exception exception;
volatile Error error;

// Triggers test case failure if any thread asserts failed
@After
public void tearDown() throws Exception {

if (error != null)

throw error; // In correct thread
if (exception != null)

throw exception; /] " " "

institute for
SOFTWARE
31 RESEARCH

How do you fix it? (2)

Thread t = new Thread(() -> {

try {
assertEquals(2, number);

} catch(Error e) {
error = e;

} catch(Exception e) {
exception = e;

}

})s

Now it sometimes passes*

*YMMV (It’s a race condition)

[]
institute for
17-214 32

The moral

e JUnit does not well-support concurrent tests

— You might get a false sense of security

e Concurrent clients beware...

institute for
17-214 33

Puzzler: “Ping Pong”

public class PingPong {
public static synchronized void main(String[] a) {
Thread t = new Thread(() -> pong());
t.run();
System.out.print("Ping");
}

private static synchronized void pong() {
System.out.print("Pong");
}

[]
institute for
17-214 34

What does it print?

public class PingPong {
public static synchronized void main(String[] a) {
Thread t = new Thread(() -> pong());
t.run();
System.out.print("Ping");
}

private static synchronized void pong() {
System.out.print("Pong");
}

(a) PingPong

(b) PongPing

(c) It varies

[]
institute for
17-214 35

What does it print?

(a) PingPong
(b) PongPing
(c) It varies

Not a multithreaded program!

[]
institute for
17-214 36

Another look

public class PingPong {
public static synchronized void main(String[] a) {
Thread t = new Thread(() -> pong());
t.run(); // An easy typo!
System.out.print("Ping");
}

private static synchronized void pong() {
System.out.print("Pong");
}

institute for
17-214 37

How do you fix it?

public class PingPong {
public static synchronized void main(String[] a) {
Thread t = new Thread(() -> pong());
t.start();
System.out.print("Ping");
}

private static synchronized void pong() {
System.out.print("Pong");
}

Now prints PingPong

[]
institute |
17-214 38 SOFTWARE
RESEARCH

The moral

Invoke Thread.start, not Thread. run

— Can be very difficult to diagnose

This is a severe API design bug!

Thread should not have implemented Runnable
— This confuses is-a and has-a relationships
— Thread’s runnable should have been private

Thread violates the “Minimize accessibility” principle

[]
institute for
17-214 39

Summary

 Concurrent programming can be hard to get right
— Easy to introduce bugs even in simple examples

* Coming soon:
— Higher-level abstractions for concurrency
— Program structure for concurrency
— Frameworks for concurrent computation

institute for
17-214 a0

