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Administrivia

e Homework 5b due Tuesday night

* Design a framework for consideration as a “best framework!”
— And let us know that you want your framework considered

e It’s fun, and can lead to good things
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Key concepts from last Tuesday
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42 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp
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A concurrency bug with an easy fix

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;

¥

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;

¥

public long balance() {
return balance;

¥
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Concurrency control with Java’s intrinsic locks

 synchronized (lock) { .. }

— Synchronizes entire block on object 1ock; cannot forget to unlock

— Intrinsic locks are exclusive: One thread at a time holds the lock

— Intrinsic locks are reentrant: A thread can repeatedly get same lock
 synchronized on aninstance method

— Equivalentto synchronized (this) { .. } for entire method
 synchronized on a static method in class Foo

— Equivalentto synchronized (Foo.class) { .. } forentire method

Thread [N, e
Thread2 NNV -
Thread3 — IR
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Another concurrency bug: serial number generation

public class SerialNumber {
private static long nextSerialNumber = 0;

public static long generateSerialNumber() {
return nextSerialNumber++;

}

public static void main(String[] args) throws InterruptedException {
Thread threads[] = new Thread[5];
for (int i = @; 1 < threads.length; i++) {
threads[i] = new Thread(() -> {
for (int j = 0; j < 1 000 000; j++)
generateSerialNumber();

});
threads[i].start();
}
for(Thread thread : threads)

thread.join();
System.out.println(generateSerialNumber());
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What went wrong?

* An action is atomic if it is indivisible
— Effectively, it happens all at once
* No effects of the action are visible until it is complete
* No other actions have an effect during the action

e Java’s ++ (increment) operator is not atomic!
— It reads a field, increments value, and writes it back

* If multiple calls to generateSerialNumber see the same
value, they generate duplicates

[ ]
institute
17-214 s e
RESEARCH



A third concurrency bug: cooperative thread termination

public class StopThread {
private static boolean stopRequested;

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested)
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
stopRequested = true;
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What went wrong?

* In the absence of synchronization, there is no guarantee as to
when, if ever, one thread will see changes made by another

* JVMs can and do perform this optimization (“hoisting”):
while (!done)
/* do something */ ;
becomes:
if (!done)
while (true)
/* do something */ ;
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Pop quiz — what’s wrong with this “fix”?

public class StopThread {
private static boolean stopRequested;
private static synchronized void requestStop() {
stopRequested = true;
}

private static boolean stopRequested() {
return stopRequested;
}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested())
/* Do something */ ;

})s
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
requestStop();
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You must lock write and read!
Otherwise, locking accomplishes nothing

public class StopThread {
private static boolean stopRequested;
private static synchronized void requestStop() {
stopRequested = true;
}

private static synchronized boolean stopRequested() {
return stopRequested;
}

public static void main(String[] args) throws Exception {
Thread backgroundThread = new Thread(() -> {
while (!stopRequested())
/* Do something */ ;

1)
backgroundThread.start();

TimeUnit.SECONDS.sleep(1);
requestStop();
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Today

 More basic concurrency in Java
— Some challenges of concurrency

e Still coming soon:
— Higher-level abstractions for concurrency
— Program structure for concurrency
— Frameworks for concurrent computation
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A liveness problem: poor performance

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;

¥

static synchronized void transferFrom(BankAccount source,
BankAccount dest, long amount) {
source.balance -= amount;
dest.balance += amount;

¥

public synchronized long balance() {
return balance;

¥
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A liveness problem: poor performance

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
synchronized(BankAccount.class) {
source.balance -= amount;
dest.balance += amount;

}
}

public synchronized long balance() {
return balance;

¥
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A proposed fix: lock splitting

Does this work?

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;
}
static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
synchronized(source) {
synchronized(dest) {
source.balance -= amount;
dest.balance += amount;
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A liveness problem: deadlock

* A possible interleaving of operations:
— bugsThread locks the daffy account
— daffyThread locks the bugs account
— bugsThread waits to lock the bugs account...
— daffyThread waits to lock the daffy account...

waits-for

waits-for
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A liveness problem: deadlock

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;

}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
synchronized(source) {
synchronized(dest) {
source.balance -= amount;
dest.balance += amount;
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Avoiding deadlock

* The waits-for graph represents dependencies between threads

— Each node in the graph represents a thread
— An edge T1->T2 represents that thread T1 is waiting for a lock T2 owns

 Deadlock has occurred iff the waits-for graph contains a cycle
 One way to avoid deadlock: locking protocols that avoid cycles
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Avoiding deadlock by ordering lock acquisition

public class BankAccount {
private long balance;
private final long id = SerialNumber.generateSerialNumber();

public BankAccount(long balance) {
this.balance = balance;

}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
BankAccount first = (source.id < dest.id) ? source : dest;
BankAccount second = (first == source) ? dest : source;
synchronized (first) {
synchronized (second) {
source.balance -= amount;
dest.balance += amount;
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Another subtle problem: The lock object is exposed

public class BankAccount {
private long balance;
private final long id = SerialNumber.generateSerialNumber();

public BankAccount(long balance) {
this.balance = balance;

}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
BankAccount first = (source.id < dest.id) ? source : dest;
BankAccount second = (first == source) ? dest : source;
synchronized (first) {
synchronized (second) {
source.balance -= amount;
dest.balance += amount;
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An easy fix: Use a private lock

public class BankAccount {
private long balance;

private final long id = SerialNumber.generateSerialNumber();

private final Object lock = new Object();

public BankAccount(long balance) { this.balance = balance; }

static void transferFrom(BankAccount source,

BankAccount dest, long amount) {
BankAccount first = source.id < dest.id ? source :
BankAccount second = first == source ? dest : source;

synchronized (first.lock) {
synchronized (second.lock) {
source.balance -= amount;
dest.balance += amount;
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Concurrency and information hiding

* Encapsulate an object’s state — Easier to implement invariants
— Encapsulate synchronization — Easier to implement synchronization policy
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An aside: Java Concurrency in Practice annotations

@ThreadSafe public class BankAccount {
@GuardedBy("lock") private long balance;

private final long id = SerialNumber.generateSerialNumber();
private final Object lock = new Object();

public BankAccount(long balance) { this.balance = balance; }

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {
BankAccount first = source.id < dest.id ? source : dest;
BankAccount second = first == source ? dest : source;
synchronized (first.lock) {
synchronized (second.lock) {
source.balance -= amount;
dest.balance += amount;
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An aside: Java Concurrency in Practice annotations

@ThreadSafe
@NotThreadSafe
@GuardedBy
@Immutable
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duterlude - Ye Olde Puzzler



Puzzler: “Racy Little Number”

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class LittleTest {
int number;

@Test
public void test() throws InterruptedException {
humber = 0;
Thread t = new Thread(() -> {
assertEquals(2, number);
1)
number = 1;
t.start();
number++;
t.join();

institute for
17-214 27



How often does this test pass?

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class LittleTest {
int number;

@Test
public void test() throws InterruptedException {

humber = 0;
Thread t = new Thread(() -> {
assertEquals(2, number);

r}13r,nber = 1; (a) It always fails
Eu;EZEEQ (b) It sometimes passes
} t-Join(); (c) It always passes
} (d) It always hangs
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How often does this test pass?

(a) It always fails
(b) It sometimes passes
(c) It always passes — but it tells us nothing

(d) It always hangs

JUnit doesn’t see assertion failures in other threads
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Another look

import org.junit.*;
import static org.junit.Assert.*;

public class LittleTest {
int number;

@Test
public void test() throws InterruptedException {
nhumber = 0;
Thread t = new Thread(() -> {
assertEquals(2, number); // JUnit never sees exception!
1)

nhumber = 1;
t.start();
number++;
t.join();
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How do you fix it? (1)

17-214

// Keep track of assertion failures during test
volatile Exception exception;
volatile Error error;

// Triggers test case failure if any thread asserts failed
@After
public void tearDown() throws Exception {

if (error != null)

throw error; // In correct thread
if (exception != null)

throw exception; /] " " "
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How do you fix it? (2)

Thread t = new Thread(() -> {

try {
assertEquals(2, number);

} catch(Error e) {
error = e;

} catch(Exception e) {
exception = e;

}

})s

Now it sometimes passes*

*YMMV (It’s a race condition)

[ ]
institute for
17-214 32



The moral

e JUnit does not well-support concurrent tests

— You might get a false sense of security

e Concurrent clients beware...

institute for
17-214 33



Puzzler: “Ping Pong”

public class PingPong {
public static synchronized void main(String[] a) {
Thread t = new Thread( () -> pong() );
t.run();
System.out.print("Ping");
}

private static synchronized void pong() {
System.out.print("Pong");
}
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What does it print?

public class PingPong {
public static synchronized void main(String[] a) {
Thread t = new Thread( () -> pong() );
t.run();
System.out.print("Ping");
}

private static synchronized void pong() {
System.out.print("Pong");
}

(a) PingPong

(b) PongPing

(c) It varies
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What does it print?

(a) PingPong
(b) PongPing
(c) It varies

Not a multithreaded program!
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Another look

public class PingPong {
public static synchronized void main(String[] a) {
Thread t = new Thread( () -> pong() );
t.run(); // An easy typo!
System.out.print("Ping");
}

private static synchronized void pong() {
System.out.print("Pong");
}
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How do you fix it?

public class PingPong {
public static synchronized void main(String[] a) {
Thread t = new Thread( () -> pong() );
t.start();
System.out.print("Ping");
}

private static synchronized void pong() {
System.out.print("Pong");
}

Now prints PingPong
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The moral

Invoke Thread.start, not Thread. run

— Can be very difficult to diagnose

This is a severe API design bug!

Thread should not have implemented Runnable
— This confuses is-a and has-a relationships
— Thread’s runnable should have been private

Thread violates the “Minimize accessibility” principle
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Summary

 Concurrent programming can be hard to get right
— Easy to introduce bugs even in simple examples

* Coming soon:
— Higher-level abstractions for concurrency
— Program structure for concurrency
— Frameworks for concurrent computation
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