Principles of Software Construction:
Objects, Design, and Concurrency

Part 3: Concurrency

Introduction to concurrency, part 4
In the trenches of parallelism

Josh Bloch Charlie Garrod

Carnegie Mellon University
School of Computer Science
[J

institute for
I S SOFTWARE
RESEARCH

°

institute for

- SOFTWARE
17 214 1 RESEAI;\CH

Administrivia

* Homework 5 Best Frameworks available today
* Homework 5c due Tuesday, 11:59 p.m.

°
institute for

- SOFTWARE
17 214 2 RESEAI;\CH

Key concepts from Tuesday

°
institute for

- SOFTWARE
17 214 3 RESEAI;\CH

Policies for thread safety

Thread-confined state — mutate but don’t share
Shared read-only state — share but don’t mutate
Shared thread-safe — object synchronizes itself internally

ol o A .

Shared guarded — client synchronizes object(s) externally

°

institute for

- SOFTWARE
17-214 a

3. Shared thread-safe state

Thread-safe objects that perform internal synchronization

You can build your own, but not for the faint of heart

You’re better off using ones from java.util.concurrent
* j.u.c also provides skeletal implementations

°

institute for

- SOFTWARE
17 214 5 RESEAIQH

Advice for building thread-safe objects

* Do as little as possible in synchronized region: get in, get out
— Obtain lock
— Examine shared data
— Transform as necessary
— Drop the lock

 If you must do something slow, move it outside the synchronized region

°
institute for

- SOFTWARE
17-214 6

The fork-join pattern

Parallel Task |

Master Thread -

if (my portion of the work is small)
do the work directly

else
split my work into pieces
recursively process the pieces

[J
institute for
17-214 7 SO

Today

* Concurrency in practice: In the trenches of parallelism

institute for
- SOFTWARE
17 2 14 8 RESEAI;\CH

Concurrency at the language level

* Consider:
Collection<Integer> collection = ..;
int sum = ©;
for (int i : collection) {

sum += 1i;
}

* |n python:
collection = ..
sum = 0
for item in collection:

sum += item

°
institute for

- SOFTWARE
17-214 o

Parallel quicksort in Nesl

function quicksort(a) =
if (#a < 2) then a

else
let pivot = a[#a/2];
lesser = {e in a| e < pivot};
equal = {e in a| e == pivot};
greater = {e in a| e > pivot};

result = {quicksort(v): v in [lesser,greater]};
in result[@] ++ equal ++ result[1];

e Operationsin {} occur in parallel
e 210-esque questions: What is total work? What is span?

[J
institute for
17-214 10 SO

Prefix sums (a.k.a. inclusive scan, a.k.a. scan)

* Goal: given array x[0..n-1], compute array of the sum of
each prefix of X

[sum(X
sum(X
sum(x

gum(x[@mn—l])]

c eg, X

0.0
0..1]

0.2

prefix sums:

17-214

)>
)>
)

[13,

9, -4, 19, -6, 2, 6, 3]
22, 18, 37, 31, 33, 39, 42]

°
- S institute for
SOFTWARE

1 1 RESEARCH

Parallel prefix sums

* Intuition: Partial sums can be efficiently combined to form
much larger partial sums. E.g., if we know sum(x[0..3]) and
sum(x[4..7]), then we can easily compute sum(x[0..7])

* eg., X = (1.3, 9, -4, 19, -6, 2, 6, 3]

[J
institute for
17-214 12 SO

Parallel prefix sums algorithm, upsweep

Compute the partial sums in a more useful manner

(13, 9, -4, 19, -6, 2, 6, 3]
(13, 22, -4, 15, -6, -4, 6, 9]

[J
institute for
17-214 13 SO

Parallel prefix sums algorithm, upsweep

Compute the partial sums in a more useful manner

[13, 9, -4,

NN

[13, 22, -4,

T~

(13, 22, -4,

17-214

-6, 2, 6, 3]
—6, _4] 6[9]
-6, -4, 6, 51

°
- S institute for
SOFTWARE

14 RESEARCH

Parallel prefix sums algorithm, upsweep

Compute the partial sums in a more useful manner

[13, 9o, -4, 19, -6, 2, 6, 3]
N U N N
(13, 22, -4, 15, -6, -4, 6, 91
\\\\\\\\\sl \\\\\\\\\sl

(13, 22, -4, 37, -6, -4, 6, 51
|

(13, 22, -4, 37, -6, -4, 6, 42]

[J
institute for
17-214 15 SO

Parallel prefix sums algorithm, downsweep

Now unwind to calculate the other sums

(13, 22, -4, 37, -6, -4, 6,
(13, 22, -4, 37, -6, 33, 6,

17-214 16

421

421

institute for
SOFTWARE
RESEARCH

Parallel prefix sums algorithm, downsweep

Now unwind to calculate the other sums

(13, 22, -4, 37, -6, -4, 6,
(13, 22, -4, 37, -6, 33, 6,

NEONE N

(13, 22, 18, 37, 31, 33, 39,

e Recall, we started with:

(13, 9, -4, 19, -6, 2, 6,

17-214 17

4

4

4

institute for
SOFTWARE
RESEARCH

2]

2]

2]

3]

Doubling array size adds two more levels

Upsweep

< \<+§ Downsweep
[

institute for

17-214 18 [NYf o

Parallel prefix sums

pseudocode

// Upsweep
prefix_sums(x):
for d in @ to (lgn)-1: // d 1is depth
parallelfor i in 29-1 to n-1, by 291:
x[1+29] = x[1i] + x[i+29]

// Downsweep
for d in (lgn)-1 to @:
parallelfor i in 29-1 to n-1-29, by 29+1:
if (i-29 >= 9):
x[1] = x[1] + x[i-29]

[J
institute for
17-214 19 SO

Parallel prefix sums algorithm, in code

* An iterative Java-esque implementation:
void iterativePrefixSums(long[] a) {
int gap = 1;
for (; gap < a.length; gap *= 2) {
parfor(int i=gap-1; i+gap < a.length; i += 2*gap) {
a[i+gap] = a[i] + a[i+gap];
}
}
for (5 gap > @; gap /= 2) {
parfor(int i=gap-1; i < a.length; i += 2*gap) {
a[i] = a[i] + ((i-gap >= @) ? a[i-gap] : 0);
}

[J
institute for
17-214 20 SO

Parallel prefix sums algorithm, in code

* Arecursive Java-esque implementation:
void recursivePrefixSums(long[] a, int gap) {
if (2*gap - 1 >= a.length) {
return;

¥

parfor(int i=gap-1; i+gap < a.length; i += 2*gap) {
a[i+gap] = a[i] + a[i+gap];
}

recursivePrefixSums(a, gap*2);

parfor(int i=gap-1; i < a.length; i += 2*gap) {
a[i] = a[i] + ((i-gap >= ©) ? a[i-gap] : 0);
}
}

[J
institute for
17-214 21 SO

Parallel prefix sums algorithm

* How good is this?

[J
institute for
17-214 22 SO

Parallel prefix sums algorithm

* How good is this?
— Work: O(n)
— Span: O(lg n)

 See PrefixSums. java,
PrefixSumsSequentialWithParallelWork. java

[J
institute for
17-214 23 SO

Goal: parallelize the PrefixSums implementation

» Specifically, parallelize the parallelizable loops
parfor(int i = gap-1; i+gap < a.length; 1 += 2*gap) {
al[i+gap] = a[i] + a[i+gap];
}
e Partition into multiple segments, run in different threads
for(int i = left+gap-1; i+gap < right; 1 += 2*gap) {
a[i+gap] = a[i] + a[i+gap];
}

[J
institute for
17-214 24 SO

Recall from the previous lecture: Fork/join in Java

* The java.util.concurrent.ForkJoinPool class
— Implements ExecutorService

— Executes java.util.concurrent.ForkJoinTask<V> or
java.util.concurrent.RecursiveTask<V> or
java.util.concurrent.RecursiveAction

* In along computation:
— Fork a thread (or more) to do some work
— Join the thread(s) to obtain the result of the work

[J
institute for
17-214 25 SO

The RecursiveAction abstract class

public class MyActionFoo extends RecursiveAction {
public MyActionFoo(..) {
store the data fields we need

@Override
public void compute() {
if (the task is small) {
do the work here;
return;

¥

invokeAll(new MyActionFoo(..), // smaller
new MyActionFoo(..), // subtasks

) /] ..

[J
institute for
17-214 26 SO

A ForkJoin example

* See PrefixSumsParallelForkJoin.java
* See the processor go, go go!

[J
institute for
17-214 27 SO

Parallel prefix sums algorithm

* How good is this?
— Work: O(n)
— Span: O(lg n)
* See PrefixSumsParallelArrays.java

[J
institute for
17-214 28 SO

Parallel prefix sums algorithm

* How good is this?

— Work: O(n)

— Span: O(lg n)
* See PrefixSumsParallelArrays.java
 See PrefixSumsSequential.java

[J
institute for
17-214 29 SO

Parallel prefix sums algorithm

* How good is this?
— Work: O(n)
— Span: O(lg n)
* See PrefixSumsParallelArrays.java
 See PrefixSumsSequential.java
— n-1 additions
— Memory access is sequential
* For PrefixSumsSequentialWithParallelWork. java

— About 2n useful additions, plus extra additions for the loop indexes
— Memory access is non-sequential

* The punchline:
— Don't roll your own. Know the libraries
— Cache and constants matter

[J
institute for
17-214 30 SO

