
1 17-214

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	3:	Concurrency	
	
Introduction	to	concurrency,	part	4	
In	the	trenches	of	parallelism	
	
Josh	Bloch 	 	Charlie	Garrod	

2 17-214

Administrivia	

•  Homework	5	Best	Frameworks	available	today	
•  Homework	5c	due	Tuesday,	11:59	p.m.	

3 17-214

Key	concepts	from	Tuesday	

4 17-214

Policies	for	thread	safety	

1.   Thread-confined	state	–	mutate	but	don’t	share	
2.   Shared	read-only	state	–	share	but	don’t	mutate	
3.   Shared	thread-safe	–	object	synchronizes	itself	internally	
4.   Shared	guarded	–	client	synchronizes	object(s)	externally	

5 17-214

3.	Shared	thread-safe	state	

•  Thread-safe	objects	that	perform	internal	synchronization	
•  You	can	build	your	own,	but	not	for	the	faint	of	heart	
•  You’re	better	off	using	ones	from	java.util.concurrent	
•  j.u.c	also	provides	skeletal	implementations	

6 17-214

Advice	for	building	thread-safe	objects	

•  Do	as	little	as	possible	in	synchronized	region:		get	in,	get	out	
–  Obtain	lock	
–  Examine	shared	data	
–  Transform	as	necessary	
–  Drop	the	lock	

•  If	you	must	do	something	slow,	move	it	outside	the	synchronized	region	

7 17-214

The	fork-join	pattern	

if	(my	portion	of	the	work	is	small)	
				do	the	work	directly	
else	
				split	my	work	into	pieces	
				recursively	process	the	pieces	

8 17-214

Today	

•  Concurrency	in	practice:		In	the	trenches	of	parallelism	

9 17-214

Concurrency	at	the	language	level	

•  Consider:	
Collection<Integer>	collection	=	…;	
int	sum	=	0;	
for	(int	i	:	collection)	{	
				sum	+=	i;	
}	

•  In	python:	
collection	=	…	
sum	=	0	
for	item	in	collection:	
				sum	+=	item	

10 17-214

Parallel	quicksort	in	Nesl	

function	quicksort(a)	=	
		if	(#a	<	2)	then	a	
		else	
			let	pivot			=	a[#a/2];	
							lesser		=	{e	in	a|	e	<	pivot}; 		
							equal			=	{e	in	a|	e	==	pivot};		
							greater	=	{e	in	a|	e	>	pivot};			
							result		=	{quicksort(v):	v	in	[lesser,greater]};	
			in	result[0]	++	equal	++	result[1];	
•  Operations	in	{}	occur	in	parallel	
•  210-esque	questions:		What	is	total	work?		What	is	span?	

11 17-214

Prefix	sums	(a.k.a.	inclusive	scan,	a.k.a.	scan)	

•  Goal:		given	array	x[0…n-1],		compute	array	of	the	sum	of	
each	prefix	of	x	
[sum(x[0…0]),		
		sum(x[0…1]),		
		sum(x[0…2]),		
		…		
		sum(x[0…n-1])]	

•  e.g.,		x = [13, 9, -4, 19, -6, 2, 6, 3]
					prefix	sums:								[13, 22, 18, 37, 31, 33, 39, 42]

12 17-214

Parallel	prefix	sums	

•  Intuition:		Partial	sums	can	be	efficiently	combined	to	form	
much	larger	partial	sums.		E.g.,	if	we	know	sum(x[0…3])	and	
sum(x[4…7]),	then	we	can	easily	compute	sum(x[0…7])	

•  e.g.,		x = [13, 9, -4, 19, -6, 2, 6, 3]	

13 17-214

Parallel	prefix	sums	algorithm,	upsweep	

Compute	the	partial	sums	in	a	more	useful	manner

[13, 9, -4, 19, -6, 2, 6, 3]

[13, 22, -4, 15, -6, -4, 6, 9]	

	

14 17-214

Parallel	prefix	sums	algorithm,	upsweep	

Compute	the	partial	sums	in	a	more	useful	manner

[13, 9, -4, 19, -6, 2, 6, 3]

[13, 22, -4, 15, -6, -4, 6, 9]	

	

[13, 22, -4, 37, -6, -4, 6, 5]	

	

	

15 17-214

Parallel	prefix	sums	algorithm,	upsweep	

Compute	the	partial	sums	in	a	more	useful	manner

[13, 9, -4, 19, -6, 2, 6, 3]

[13, 22, -4, 15, -6, -4, 6, 9]	

	

[13, 22, -4, 37, -6, -4, 6, 5]	

	

[13, 22, -4, 37, -6, -4, 6, 42]	

	

16 17-214

Parallel	prefix	sums	algorithm,	downsweep	

Now	unwind	to	calculate	the	other	sums

[13, 22, -4, 37, -6, -4, 6, 42]	

	

[13, 22, -4, 37, -6, 33, 6, 42]	
	

17 17-214

Parallel	prefix	sums	algorithm,	downsweep	

Now	unwind	to	calculate	the	other	sums	

[13, 22, -4, 37, -6, -4, 6, 42]	

	

[13, 22, -4, 37, -6, 33, 6, 42]	

	

[13, 22, 18, 37, 31, 33, 39, 42]	

•  Recall,	we	started	with:
[13, 9, -4, 19, -6, 2, 6, 3]

	

18 17-214

Doubling	array	size	adds	two	more	levels	

Upsweep	

Downsweep	

19 17-214

Parallel	prefix	sums	

pseudocode	
	
//	Upsweep	
prefix_sums(x):	
		for	d	in	0	to	(lg	n)-1:									//	d	is	depth	
				parallelfor	i	in	2d-1	to	n-1,	by	2d+1:		
						x[i+2d]	=	x[i]	+	x[i+2d]	
	
//	Downsweep	
for	d	in	(lg	n)-1	to	0:	
		parallelfor	i	in	2d-1	to	n-1-2d,	by	2d+1:	
				if	(i-2d	>=	0):	
						x[i]	=	x[i]	+	x[i-2d]	
	

20 17-214

Parallel	prefix	sums	algorithm,	in	code	

•  An	iterative	Java-esque	implementation:	
void	iterativePrefixSums(long[]	a)	{	
		int	gap	=	1;	
		for	(;	gap	<	a.length;	gap	*=	2)	{	
				parfor(int	i=gap-1;	i+gap	<	a.length;	i	+=	2*gap)	{	
						a[i+gap]	=	a[i]	+	a[i+gap];	
				}	
		}	
		for	(;	gap	>	0;	gap	/=	2)	{	
				parfor(int	i=gap-1;	i	<	a.length;	i	+=	2*gap)	{	
						a[i]	=	a[i]	+	((i-gap	>=	0)	?	a[i-gap]	:	0);	
				}	
		}	

	

21 17-214

Parallel	prefix	sums	algorithm,	in	code	
•  A	recursive	Java-esque	implementation:	

void	recursivePrefixSums(long[]	a,	int	gap)	{	
		if	(2*gap	–	1	>=	a.length)	{	
				return;	
		}	
	
		parfor(int	i=gap-1;	i+gap	<	a.length;	i	+=	2*gap)	{	
				a[i+gap]	=	a[i]	+	a[i+gap];	
		}	
	
		recursivePrefixSums(a,	gap*2);	
	
		parfor(int	i=gap-1;	i	<	a.length;	i	+=	2*gap)	{	
				a[i]	=	a[i]	+	((i-gap	>=	0)	?	a[i-gap]	:	0);	
		}	
}	

	

22 17-214

Parallel	prefix	sums	algorithm	

•  How	good	is	this?	

23 17-214

Parallel	prefix	sums	algorithm	

•  How	good	is	this?	
–  Work:		O(n)	
–  Span:	O(lg	n)	

•  See	PrefixSums.java,	
PrefixSumsSequentialWithParallelWork.java	

24 17-214

Goal:		parallelize	the	PrefixSums	implementation	

•  Specifically,	parallelize	the	parallelizable	loops	
parfor(int	i	=	gap-1;		i+gap	<	a.length;		i	+=	2*gap)	{	
		a[i+gap]	=	a[i]	+	a[i+gap];	
}	

•  Partition	into	multiple	segments,	run	in	different	threads	
for(int	i	=	left+gap-1;		i+gap	<	right;		i	+=	2*gap)	{	
		a[i+gap]	=	a[i]	+	a[i+gap];	
}	

25 17-214

Recall	from	the	previous	lecture:		Fork/join	in	Java	

•  The	java.util.concurrent.ForkJoinPool	class	
–  Implements	ExecutorService		
–  Executes	 		java.util.concurrent.ForkJoinTask<V>	or		 	

																		java.util.concurrent.RecursiveTask<V>	or	 	
	 		java.util.concurrent.RecursiveAction	

•  In	a	long	computation:	
–  Fork	a	thread	(or	more)	to	do	some	work	
–  Join	the	thread(s)	to	obtain	the	result	of	the	work	

26 17-214

The	RecursiveAction abstract	class	
public	class	MyActionFoo	extends	RecursiveAction	{	
				public	MyActionFoo(…)	{	
								store	the	data	fields	we	need	
				}	
	
				@Override	
				public	void	compute()	{	
								if	(the	task	is	small)	{	
												do	the	work	here;	
												return;	
								}	
	
								invokeAll(new	MyActionFoo(…),		//	smaller	
																		new	MyActionFoo(…),		//	subtasks	
																		…);																		//	…	
				}	
}	

27 17-214

A	ForkJoin	example	

•  See	PrefixSumsParallelForkJoin.java	
•  See	the	processor	go,	go	go!

28 17-214

Parallel	prefix	sums	algorithm	

•  How	good	is	this?	
–  Work:	O(n)	
–  Span:	O(lg	n)	

•  See	PrefixSumsParallelArrays.java	

29 17-214

Parallel	prefix	sums	algorithm	

•  How	good	is	this?	
–  Work:	O(n)	
–  Span:	O(lg	n)	

•  See	PrefixSumsParallelArrays.java	
•  See	PrefixSumsSequential.java		

30 17-214

Parallel	prefix	sums	algorithm	

•  How	good	is	this?	
–  Work:	O(n)	
–  Span:	O(lg	n)	

•  See	PrefixSumsParallelArrays.java	
•  See	PrefixSumsSequential.java	

–  n-1	additions	
–  Memory	access	is	sequential	

•  For	PrefixSumsSequentialWithParallelWork.java	
–  About	2n	useful	additions,	plus	extra	additions	for	the	loop	indexes	
–  Memory	access	is	non-sequential	

•  The	punchline:	
–  Don't	roll	your	own.		Know	the	libraries	
–  Cache	and	constants	matter	

