Principles of Software Construction:
Objects, Design, and Concurrency

Part 4: et cetera

Toward SE in practice: Empirical methods, DevOps

Josh Bloch Charlie Garrod

&:Iunmgiv Mellon University
School of Computer Science
[]
institute for
I S SOFTWARE
RESEARCH

°

institute for

- SOFTWARE
17 214 1 RESEAI;\CH

Administrivia

* Homework 6 available
— Checkpoint deadline this Thursday
— Due Wednesday, April 29th

°
institute for

- SOFTWARE
17 214 2 RESEAI;\CH

Key concepts from last Thursday

e Parallel streams conclusion, performance trolling
» SE as a sociotechnical system

°
institute for

- SOFTWARE
17 214 3 RESEAI;\CH

Major topics in 17-313 (Foundations of SE)

* Process considerations for software development
 Requirements elicitation, documentation, and evaluation
e Design for quality attributes

e Strategies for quality assurance

* Empirical methods in software engineering

* Time and team management

* Economics of software development

°
institute for

- SOFTWARE
17-214 a

Today: Software engineering in practice

 SE empirical methods: Test-driven development case study
* Version and release management

— Introduction to DevOps

°
institute for

- SOFTWARE
17-214 5

Test-driven development (TDD), informally

°
institute for

- SOFTWARE
17 214 6 RESEAI;\CH

Test-driven development (TDD), informally

R

Uff\LF a Make the
f':e;"s Fest [osS

RLelackoc

From Growing Object-Oriented Software by Nat Pryce and Steve Freeman
http:/www.growing-object-oriented-software.com/figures.html

@sebrose http:/cucumber.io

institute for
17-214 7 SO

Formal test-driven development rules
1. You may only write production code to make a failing test pass

2. You may only write a minimally failing unit test
3. You may only write minimal code to pass the failing test

°

institute for

- SOFTWARE
17-214 8

Test-driven development as a design process

"The act of writing a unit test is more an act of design and
documentation than of verification. It closes a remarkable number
of feedback loops, the least of which pertains to verification."

°

institute for

- SOFTWARE
17-214 o

Advantages of test-driven development

e Clear place to start

* Iterative, agile design process

* Less wasted effort?

* Robust test suite, including regression tests

[J
institute for
17-214 10 SO

A test-driven development demo: Diamond Kata

* Given a letter, generate a diamond starting at ‘A’, with the given
letter at the widest point.
— e.g.,diamond('C") would generate:
A
B B

C C
B B
A

[J
institute for
17-214 11 SO

Formal test-driven development: Your impressions?

[J
institute for
17-214 12 SO

Empirical methods in software engineering

* How do we study the effectiveness of test-driven development
compared to other methodologies?

— Note: Mix of social and technical issues

[J
institute for
17-214 13 SO

Research on test-driven development (1/2)

WebIDE vs Traditional Labs

 Hilton et al.: Students learn better when
forced to write tests first

 Bhat et al.: At Microsoft, projects using TDD
had greater than two times code quality,
but 15% more upfront setup time

 George et al.: TDD passed 18% more test cases, but took 16%
more time

* Scanniello et al.: Perceptions of TDD include: novices believe
TDD improves productivity at the expense of internal quality

[J
institute for
17-214 14 SO

Research on test-driven development (2/2)

* Fucci et al.: Results: The Kruskal-Wallis tests did not show any
significant difference between TDD and TLD in terms of testing
effort (p-value = .27), external code quality (p-value = .82), and
developers' productivity (p-value = .83).

* Fucci et al.: Conclusion: The claimed benefits of TDD may not be
due to its distinctive test-first dynamic, but rather due to the fact
that TDD-like processes encourage fine-grained, steady steps
that improve focus and flow.

[J
institute for
17-214 15 SO

Today: Software engineering in practice

 SE empirical methods: Test-driven development case study
* Version and release management

— Introduction to DevOps

[J
institute for
17-214 16 SO

Real-world software development challenges

* Imagine: You discover a bug in version 8.2.4 of your software
— You want to discover, fix, and deploy updates to old versions
— You want to fix the bug for new versions in ongoing development

[J
institute for
17-214 17 SO

Configuration management (CM)

* Definition (Pressman): Configuration management “is a set of
tracking and control activities that are initiated when a software

engineering projects begins and terminates when software is
taken out of operation.”

[J
institute for
17-214 18 SO

Reasons for configuration management

e Software evolution

e Separate development

e Audits (legal, regulatory)

* Product lines

 Market variation (e.g., U.S., Europe, Asia)
e Platform variation (e.g., Android, iOS)

[J
institute for
17-214 19 SO

Consider: timelines of traditional software development

e.g., the Microsoft* OS development history

Year 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 present

‘Windows 1.0 - Windows 21X i Windows 3.0 Windows 3.1x - Windows 95 = Windows 58

20 Edition 1

Windows NT 3.x 1 Windows NT 4.0 Window|

Source: By Paulire - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=46634740

o
institute for
17-214 20 SO

Compare to the Ubuntu release cycle

17-214

Ubuntu 18.04.5 LTS
Ubuntu 20.04 LTS

Ubuntu 18.04.4 LTS

Ubuntu 19,10

Ubuntu 18.04.3 LTS

Ubuntu 19.04

Ubuntu 18.04.2 LTS

Ubuntu 1810 (w4, 18}

Ubuntu 18.04.1 LTS (v4.15)
Ubuntu 16.04.5 LTS (v4.15)
Ubuntu 18.04.0 LTS (v4.15)
Ubuntu 16.04.1 LTS (v4.4)
Ubuntu 14.04.5 LTS (v3.13)
Ubuntu 16.04.0 LTS (v4.4)
Ubuntu 14.04.1 LTS (v3.13)
Ubuntu 12.04.5 LTS (v3.13)
Ubuntu 14.04.0 LTS (v3.13)
Ubuntu 12.04.1 LTS (v3.2)

2012 2013 2004 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2020 2030 2021

| | Em
=
| -E-II

B Ubunbu LTS release sunporl
I interim refease
M -xrended security malntenance for customers
[J

institute for
SOFTWARE
2 1 RESEARCH

Aside: Semantic versioning for releases

* Given a version number MAJOR.MINOR.PATCH, increment the:

— MAJOR version when you make incompatible API changes,

— MINOR version when you add functionality in a backwards-compatible
manner, and

— PATCH version when you make backwards-compatible bug fixes.

* Additional labels for pre-release and build metadata are
available as extensions to the MAJOR.MINOR.PATCH format.

http://semver.org/

[J
institute for
17-214 22 SO

Compare to the (former) Facebook release cycle

www.facebook.com

[eddwer] Toekafdockgmer
|

Release v
T : Release branch

Every weekday (3x)

https://engineering.fb.com/web/rapid-release-at-massive-scale,

o
institute for
17-214 23 SO

Number of commits/week became unsustainable

Weekly web branch

10000

13-Jun 13-Nov 14-Mar WAg 15Jan 15-May 15-Sep 16-Feb

°
-I S institute for
SOFTWARE

24 RESEARCH

Modern Facebook release cycle (1000+ diffs / day)

Push-blocking alerts

Push-blocking tasks Flytrap
Crashbot for WWW anomaly
Emergency button alerts

100% production

Push-blocking tasks
Emergency button

2% production Push-blockingalertsl

employees

-I S institute for
SOFTWARE
25 RESEARCH

Aside: Canary testing

OLD VERSION
APPLICATION
SERVER
MOST
OO0 i)) USERS |
.'O' ‘ (95%)
‘ —i - — S— ——
ROUTER SOME 8 EW VERSION)
USER USERS :
(5%) » ,
WEB APPLICATION DATABASE
SERVER | T~ | SERVER | T ™ | SERVER:
[—— | s |
\& 43

[]
institute for
17-214 26 o

Aside: Dark launches

- Focuses on user response to frontend changes rather than
performance of backend

- Measure user response via metrics: engagement, adoption

Audience Overview Mar 1, 2014 - Mar 31, 2014 ~

Email Export v AddtoDashboard Shortcut <

Visits Unique Visitors Pageviews
2,546 2,314 3,971
I) S O
Pages / Visit Avg. Visit Duration Bounce Rate
1.56 00:00:53 70.11%
A e e e
. . .
17 214 institute for
- SOFTWARE
27 RESEARCH

To be continued...

[J
institute for
17-214 28 SO

