
1 17-214 

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	4:		et	cetera	
	
Toward	SE	in	practice:	Empirical	methods,	DevOps	
	
Josh	Bloch 	 	Charlie	Garrod	



2 17-214 

Administrivia	

•  Homework	6	available	
–  Checkpoint	deadline	this	Thursday	
–  Due	Wednesday,	April	29th	



3 17-214 

Key	concepts	from	last	Thursday	

•  Parallel	streams	conclusion,	performance	trolling	
•  SE	as	a	sociotechnical	system	



4 17-214 

Major	topics	in	17-313	(Foundations	of	SE)	

•  Process	considerations	for	software	development	
•  Requirements	elicitation,	documentation,	and	evaluation	
•  Design	for	quality	attributes	
•  Strategies	for	quality	assurance	
•  Empirical	methods	in	software	engineering	
•  Time	and	team	management	
•  Economics	of	software	development	



5 17-214 

Today:		Software	engineering	in	practice	

•  SE	empirical	methods:		Test-driven	development	case	study	
•  Version	and	release	management	

–  Introduction	to	DevOps	



6 17-214 

Test-driven	development	(TDD),	informally	



7 17-214 

Test-driven	development	(TDD),	informally	



8 17-214 

Formal	test-driven	development	rules	

1.  You	may	only	write	production	code	to	make	a	failing	test	pass	
2.  You	may	only	write	a	minimally	failing	unit	test	
3.  You	may	only	write	minimal	code	to	pass	the	failing	test	



9 17-214 

Test-driven	development	as	a	design	process	

"The	act	of	writing	a	unit	test	is	more	an	act	of	design	and	
documentation	than	of	verification.		It	closes	a	remarkable	number	
of	feedback	loops,	the	least	of	which	pertains	to	verification."	



10 17-214 

Advantages	of	test-driven	development	

•  Clear	place	to	start	
•  Iterative,	agile	design	process	
•  Less	wasted	effort?	
•  Robust	test	suite,	including	regression	tests	



11 17-214 

A	test-driven	development	demo:		Diamond	Kata	

•  Given	a	letter,	generate	a	diamond	starting	at	‘A’,	with	the	given	
letter	at	the	widest	point.	
–  e.g.,	diamond('C')	would	generate:	
					A	
				B	B	
			C			C	
				B	B	
					A	



12 17-214 

Formal	test-driven	development:			Your	impressions?	



13 17-214 

Empirical	methods	in	software	engineering	

•  How	do	we	study	the	effectiveness	of	test-driven	development	
compared	to	other	methodologies?	
–  Note:	Mix	of	social	and	technical	issues	



14 17-214 

Research	on	test-driven	development	(1/2)	

•  Hilton	et	al.:	Students	learn	better	when	
	forced	to	write	tests	first	

•  Bhat	et	al.:	At	Microsoft,	projects	using	TDD	
had	greater	than	two	times	code	quality,		
but	15%	more	upfront	setup	time	

•  George	et	al.:	TDD	passed	18%	more	test	cases,	but	took	16%	
more	time	

•  Scanniello	et	al.:	Perceptions	of	TDD	include:	novices	believe	
TDD	improves	productivity	at	the	expense	of	internal	quality	



15 17-214 

Research	on	test-driven	development	(2/2)	

•  Fucci	et	al.:		Results:	The	Kruskal-Wallis	tests	did	not	show	any	
significant	difference	between	TDD	and	TLD	in	terms	of	testing	
effort	(p-value	=	.27),	external	code	quality	(p-value	=	.82),	and	
developers'	productivity	(p-value	=	.83).		

	
•  Fucci	et	al.:	Conclusion:	The	claimed	benefits	of	TDD	may	not	be	

due	to	its	distinctive	test-first	dynamic,	but	rather	due	to	the	fact	
that	TDD-like	processes	encourage	fine-grained,	steady	steps	
that	improve	focus	and	flow.	



16 17-214 

Today:		Software	engineering	in	practice	

•  SE	empirical	methods:		Test-driven	development	case	study	
•  Version	and	release	management	

–  Introduction	to	DevOps	



17 17-214 

Real-world	software	development	challenges	

•  Imagine:		You	discover	a	bug	in	version	8.2.4	of	your	software	
–  You	want	to	discover,	fix,	and	deploy	updates	to	old	versions	
–  You	want	to	fix	the	bug	for	new	versions	in	ongoing	development	



18 17-214 

Configuration	management	(CM)	

•  Definition	(Pressman):			Configuration	management	“is	a	set	of	
tracking	and	control	activities	that	are	initiated	when	a	software	
engineering	projects	begins	and	terminates	when	software	is	
taken	out	of	operation.”	



19 17-214 

Reasons	for	configuration	management	

•  Software	evolution	
•  Separate	development	
•  Audits	(legal,	regulatory)	
•  Product	lines	
•  Market	variation	(e.g.,	U.S.,	Europe,	Asia)	
•  Platform	variation	(e.g.,	Android,	iOS)	



20 17-214 

Consider:		timelines	of	traditional	software	development	

Source:		By	Paulire	-	Own	work,	CC	BY-SA	4.0,	https://commons.wikimedia.org/w/index.php?curid=46634740	

e.g.,	the	Microsoft*	OS	development	history	



21 17-214 

Compare	to	the	Ubuntu	release	cycle	



22 17-214 

Aside:		Semantic	versioning	for	releases	

•  Given	a	version	number	MAJOR.MINOR.PATCH,	increment	the:	
–  MAJOR	version	when	you	make	incompatible	API	changes,	
–  MINOR	version	when	you	add	functionality	in	a	backwards-compatible	

manner,	and	
–  PATCH	version	when	you	make	backwards-compatible	bug	fixes.	

•  Additional	labels	for	pre-release	and	build	metadata	are	
available	as	extensions	to	the	MAJOR.MINOR.PATCH	format.	

http://semver.org/	



23 17-214 

Compare	to	the	(former)	Facebook	release	cycle	

https://engineering.fb.com/web/rapid-release-at-massive-scale/	



24 17-214 

Number	of	commits/week	became	unsustainable	



25 17-214 

Modern	Facebook	release	cycle	(1000+	diffs	/	day)	



26 17-214 

Aside:		Canary	testing	



27 17-214 

Aside:		Dark	launches	

•  Focuses	on	user	response	to	frontend	changes	rather	than	
performance	of	backend	

•  Measure	user	response	via	metrics:	engagement,	adoption	



28 17-214 

To	be	continued…	


