Principles of Software Construction:
Objects, Design, and Concurrency

Part 4: et cetera

Toward SE in practice: DevOps and branch management

Josh Bloch Charlie Garrod

&:Iunmgiv Mellon University
School of Computer Science
[]
institute for
I S SOFTWARE
RESEARCH

°

institute for

- SOFTWARE
17 214 1 RESEAI;\CH

Administrivia

* Homework 6 available
— Checkpoint deadline tonight
— Due next Wednesday, April 29th

°
institute for

- SOFTWARE
17 214 2 RESEAI;\CH

Key concepts from last Thursday

 SE empirical methods: Test-driven development case study
* Version and release management

°
institute for

- SOFTWARE
17-214 3

Today: Software engineering in practice
 Release management, introduction to DevOps

* Choose your own adventure...
 Monolithic repositories

°

institute for

- SOFTWARE
17-214 a

Consider: timelines of traditional software development

e.g., the Microsoft* OS development history

Year 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 present

‘Windows 1.0 - Windows 21X i Windows 3.0 Windows 3.1x - Windows 95 = Windows 58

20 Edition 1

Windows NT 3.x 1 Windows NT 4.0 Window|

Source: By Paulire - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=46634740

°
institute for

- SOFTWARE
17 214 5 RESEARCH

Modern Facebook release cycle (1000+ diffs / day)

100% production

2% production

employees

Push-blocking alerts
Push-blocking tasks
Crashbot for WWW
Emergency button

Emergency button

Push-blocking alerts
Push-blocking tasks

Flytrap
anomaly
alerts

institute for
6 I S SOFTWARE
RESEARCH

Aside: Canary testing

OLD VERSION
APPLICATION
SERVER
MOST
OO0 i)) USERS |
.'O' ‘ (95%)
‘ —i - — S— ——
ROUTER SOME 8 EW VERSION)
USER USERS :
(5%) » ,
WEB APPLICATION DATABASE
SERVER | T~ | SERVER | T ™ | SERVER:
[—— | s |
\& 43

[J
institute for
- SOFTWARE
17-214 7 RESEARCH

Aside: Dark launches and A/B testing

- Focuses on user response to frontend changes rather than

performance of backend

- Measure user response via metrics: engagement, adoption

@a = 0'
© == IDI

17-214

Audience Overview

mail Exportv Addto
o O All Visits

100.00%
Overview

Mar 1, 2014 - Mar 31, 2014

«

e~

Mar 22 Mar 29
W New Visitor M Returning Visitor

institute for
I S SOFTWARE
RESEARCH

Version management using feature flags

years

months

weeks

days

Call to feature flag

New Restraint

service to query value .
auery if (flag) —— @
else .
.......... =
GateKeeper
Project: 64bit_rollout
Rank Move Group D
all users
(delete)
A ' ‘I ! o I|
> . + tPermission |
-"§ ' ': » Toggles |
O] i e
87 + Toggles !
o p ' e
g “) e hES
\ c' l' ‘\
- -~ . L4] 5]
e Bl i ‘Experiment !
R . + Toggles
g Release . ' K
' Toggles K oL
i i dynamism_

changes with
a deployment

changes with runtime
re-configuration

https://martinfowler.com/articles/feature-toggles.html
https://docs.microsoft.com/en-us/azure/devops/migrate/phase-features-with-feature-flags?view=azure-devops

17-214

changes with
each request

| History | RenderTime

| Age - Younger
Application
Browser

Code Location
Country
Datacenter

Is Employee
Friend Count - Less
Friend Count - More
Gatekeeper project
D

Locale

Network

os

Remote IP

Server IP

Server Time - After
Server Time - Before

Cancel

Alpha Def.
Updated

Console
Name

Description
Needs Flush

WHITELIST ME

BLACKLIST ME

On

vuvtxzdqrp

n/a

n/a

4/21/09 3:23:04pm

none

64 bit rollout
No

. .
institute for

I S SOFTWARE
RESEARCH

Warning! Feature flags can be dangerous

Knightmare: A DevOps
Cautionary Tale

I was speaking at a conference last year on the topics of DevOps, Configuration as Code, and
Continuous Delivery and used the following story to demonstrate the importance making
deployments fully automated and repeatable as part of a DevOps/Continuous Delivery initiative.
Since that conference I have been asked by several people to share the story through my blog.
This story is true — this really happened. This is my telling of the story based on what I have

read (I was not involved in this).

This is the story of how a company with nearly $400 million in assets went bankrupt in 45-

minutes because of a failed deployment.

Knight Capital Group realized a $460 million loss in 45-minutes,
going from being the largest trader in US equities to bankruptcy.

https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

institute for
17-214 10 SO

Configuration management in the modern world

Deployment
managers
VMs/
a1 containers

Version Build Package\
control managers
+ managers

workflows

App markets
+
update

managers

o
institute for
17-214 11 SO

Devs, Ops, and The Wall of Confusion

OLD WAY: ;

CODE —> BUILD —p—> TEST

.’,10101
] » L

DEVELOPERS HANDOFF

)

HANDOFF HANDOFF

Wall of Confusion

o
Q\’b C.
3
S 0\.’\\6
DEVELOPMENT

« Deliver new features
» Product oriented
+» Innovation

https://www.plutora.com/blog/what-is-enterprise-devops

https://www.yudiz.com/wel

17-214

-devops-p defects/

OPERATIONS

» Guarantee stability
« Service oriented

«» Rationalization

i
o=

RELEASE —pp>»> OPERATE

S

12

institute for
SOFTWARE
RESEARCH

DevOps: Development / Operations

institute for

17-214 13 SorTvALE

Two sides to DevOps

Created by Shocho .. Created by Eucalyp

Operations-oriented Developer-oriented
 Manage servers * Agile releases!
automatically e Easier to share and
e Easier to identify and fix bugs understand code
* Automatic logging, * Faster onboarding
monitoring, and operations » Safely push code through Cl/
CD pipeline

[J
institute for
17-214 14 SO

DevOps ecosystems...

~Application Lifecycle Mgmt. —

~SCM/VCS

4 slack QHipChat #irc

¥IRA Mmingle @72l © git :“ ov
mgcurial
Team Foundation SErver pyvotarracker ? GitHub
& Basecamp' ¢sasana Gi‘gs g Bltbucket U
.- TGitBucket -0
~Communication & ChatOps ~Cl ® y P
2 wercker snap

TC' TeamCity @Jenkins

~ Testing

Test Automation

Selemum

W ARMA
@FitNesse

Jasmine l

OWASP

GAUNTLT

Se@a.tting

ZAP

JUnit

N i

>_

~Deployment

Juju

‘ Octopus Deploy (xL) DepLOY
=RUNDECK

urban{code} @

Capistrano

N Nouo

7"} ElasticBox Spinnaker

~Cloud / laaS / PaaS

i o on (5] heroku
8 webservices Dokku Flynn @
=

L P

CLOUDFOUNDRY

Google Cloud Platform @MC'GPOCC
n openstack c‘f‘) 0

DEIS apPPfog openswier

o~ e

Enni '
Yard

~ Config Mgmt./Provisioning

A\

C

~Orchestration & Scheduling

(2 MESOSPHERE o

Flowdock puppet ~CHEF ANSIBLE p oocie 3 MARATHON
R . labs "
e e | Ggamoo AUt o, | B e gy | S © b
) circleci N Nomad
e 0 D SA PowerShell DSC oS
COG @ P> go .Traws o cucumber m ——— ..’ o RANCHER &%
ws Nestor um ' @) cooesmie N VAGRANT Rrereacorn g MESOS
~Knowledge Sharing ~Build % & () Galen Framework ~Artefact Management —BI / Monitoring / Logging
7 MGradle GRUNT logstash @ elasticsearch
&, ‘Sbt LOAD IMPACT (OQUAY | = @
githUb:PageS 7 J[q Maven .‘ APACHE @ i i Q || splunk> Vectér ‘klbana DATADOG
=N A / Mteter & 9
X Confluence W. — - — =BlazeMeter || DocerHus ¢ < GREK Z!PKIN IGoogleAnaIytics x-pack
(rAcuE nu-; I | RMEGISTRY &SENTRY .
I3 Read the Docs _ MSBuild test €& Bower O New Relic. Q Prometheus |
2’5;':‘ o N il Py Q PINPOINT vieceRat wwdynatrace
° . . Leiningen Frog Artifact . @
.-‘_‘aplblueprlnt - m " Browsers\/nc Q] g ractory PgtbgD ©Runsc°pe sensu /HS 7
~Database Management : QAP SRR GICILI T I e—
| $%OPENAPI % Paily @nuget % Eloa
WELARUIM B[R PO DBmaestro DBDeploy S ecﬂcw 9 @ RAYGUN &3 STATSD
)Bmaestro & P . @ Arbrakeio ARONbar | -
iz Flyway N = - H Sonatype
Discourse grapt g = redaate Flocker “ newman XUNIt.Net archiva (npm| NeXUS pagerduty &oo
reddit || 5 redg LIQUIsBASE beas @) OpsGenie /A Keen 10
[J
17-214 el
- 15 RESEARCH

Principle: Shared responsibility

- Breakdown the wall of confusion

- Improve collaboration between dev. and ops. teams
- Reduce “throw it over the fence” syndrome

- Treat failures as a learning experience...

[J
institute for
17-214 16 SO

Principle: Rapid releases and feedback

- Remove the manual and ceremonial aspects from releases
— Possibly continuous releases
— Incremental rollout; quick rollback

- Get feedback on your changes ASAP

— Continuously measure quality, refine implementation, and rerelease

Travis CI

PHABRICATOR

[J
institute for
17-214 17 SO

Principle: Configuration as code

Manage deployment config files in your version control system
— Travis, Gradle, Jenkins, ...

Packaging and installation
— Docker, package.json, setup.py, pom.xmli, ...

Infrastructure and deployment
— Docker Compose, Ansible, Puppet, Kubernetes
— Manage servers and resources

institute for
17-214 18 SO

Aside: Docker and DockerHub

® Build an image for each release
e Quickly rollback to stable versions

$ docker pull mysql:8.0
$ docker push christimperley/darjeeling

.H Docker Hub

docker pull

docker push

I

17-214

-* docker hub

institute for
SOFTWARE
1 9 RESEARCH

Principle: Automation everywhere

PSP AUTIOMAE

pip installl "91; 1&

_install “§1° &
m instoll “$1" &
npm install ‘81" &
yom install ‘81" & dnf install *$1* &
docker run ‘$1' &
pKg install ‘81" &
opt-get install “$1" &
sudo opt-get install “$1° &
steomcmd +app_update ‘$1" validate &
git clone https:/github.com/"$1’/"$1" &
cd “$1";. /configure; make; make install &
curl “$1" | bash &

AUSTHETHINGS!

https://blog.chef.io/automate-all-the-things/

[J
institute for
17-214 20 SO

DevOps Summary

- DevOps brings development and operations together
— Automation, Automation, Automation
— Infrastructure as code

- Continuous deployment is increasingly common
- Exploit opportunities of continuous deployment; perform

testing in production and quickly rollback
— Experiment, measure, and improve

[J
institute for
17-214 21 SO

Today: Software engineering in practice

* Introduction to DevOps
* Choose your own adventure...

— Repository branch management
— A Java Puzzler

 Monolithic repositories

[J
institute for
17-214 22 SO

6. “When Words Collide” N

%%‘s§3w%§“
% v
| | WS
public class PrintWords { O
public static void main(String[] args) { w¢§$ﬁ
System.out.println(Yo
Words.FIRST + " " + Words.SECOND + " " + Words.THIRD); o 5L R
}
}
public class Words { // Compile PrintWords against this version
public static final String FIRST = "the";
public static final String SECOND = null;
public static final String THIRD = "set";
}
public class Words { // Run against this version
public static final String FIRST = "physics";
public static final String SECOND = "chemistry";
public static final String THIRD = "biology";
}

institute for
17-214 23 SO

What does it print? (a) the null set
(b) physics chemistry biology

(c) Throws exception

public class PrintWords {
(d) None of the above

public static void main(String[] args) {

System.out.println(
Words.FIRST + " " + Words.SECOND + " " + Words.THIRD);
}
}
public class Words { // Compile PrintWords against this version
public static final String FIRST = "the";
public static final String SECOND = null;
public static final String THIRD = "set";
}
public class Words { // Run against this version
public static final String FIRST = "physics";
public static final String SECOND = "chemistry";
public static final String THIRD = "biology";
}

institute for
17-214 24 SO

What does it print?
(a) the null set
(b) physics chemistry biology

(c) Throws exception
(d) None of the above: the chemistry set

Java inlines constant variables

[J
institute for
17-214 25 SO

What exactly is a constant variable?

* Loosely speaking, a final primitive or String variable whose value
is a compile-time constant

— See JLS34.12.4,13.4.9, 15.28 for gory details
e Surprisingly, null isn’t a compile-time constant

[J
institute for
17-214 26 SO

Another look

public class PrintWords {
public static void main(String[] args) {

System.out.println(
Words.FIRST + " " + Words.SECOND + " " + Words.THIRD);
}
}
public class Words { // Compile PrintWords against this version
public static final String FIRST = "the"; // Constant variable
public static final String SECOND = null; "; // Not a constant variable!!!
public static final String THIRD = "set"; // Constant variable
}
public class Words { // Run against this version
public static final String FIRST = "physics";
public static final String SECOND = "chemistry";
public static final String THIRD = "biology";
}

institute for
17-214 27 SO

How do you prevent constants from being inlined?

// Utility function that simply returns its argument
private static String ident(String s) {
return s;

¥

// None of these fields are constant variables!
public class Words {
public static final String FIRST
public static final String SECOND
public static final String THIRD

}

ident("the");
ident(null);
ident("set");

Prints physics chemistry biology

institute for
. 17-214 28 [H o

The Moral

e Constant variable references are inlined
— Only primitives and strings can be constant variables
— null is not a constant variable (neither are enums)

* If you change a constant’s value without recompiling its clients,
they break!
— Use constant variable only if value will never change
— Use ident method for final primitive or string fields whose value may

change
* For language designers

— Don’tinline constants in a late-binding language
— More generally, be consistent!

institute for
17-214 29 SO

Today: Software engineering in practice

* Introduction to DevOps
* Choose your own adventure...

— Repository branch management
— A Java Puzzler

 Monolithic repositories

[J
institute for
17-214 30 SO

Google: continuous deployment, huge code base

Google repository statistics

Total number of files* 1 billion

Number of source files 9 million

Lines of code 2 billion

Depth of history 35 million commits
Size of content 86 terabytes

Commits per workday 45 thousand

“The total number of files includes source files copied into release branches, files that are deleted at the latest revision, configuration files, documentation, and supporting data files

institute for
SOFTWARE
31 RESEARCH

Exponential growth?

Millions of changes committed (cumulative)

40

1/1/2000 1/1/2005 1/1/2010 1/1/2015

2016 numbers
Google Speed and Scale

e >30,000 developers in 40+ offices
e 13,000+ projects under active development

e 30k submissions per day (1 every 3 seconds)

e All builds from source

e 30+ sustained code changes per minute with 90+ peaks
e 50% of code changes monthly

e 150+ million test cases / day, > 150 years of test / day

e Supports continuous deployment for all Google teams!

Google Confidential and Proprietary

17-214 33 |Bf s

RESEARCH

Google code base vs. Linux kernel code base

Some perspective

e 15 million lines of code in 40 thousand files (total)

e 15 million lines of code in 250 thousand files changed per week,
by humans

e 2 billion lines of code, in 9 million source files (total)

[]
institute for
SOFTWARE
34 RESEARCH

Managing a huge monorepo

* Automated testing...
e Lots of automation...

* Smart tooling...

[J
institute for
17-214 35 SO

Version control for a monorepo

* Problem: even git is slow at Facebook scale
— 1M+ source control commands run per day
— 100K+ commits per week

[J
institute for
17-214 36 SO

Version control for a monorepo

e Use build system's file monitor, Watchman, to see which files
have changed = 5x faster “status” command

status diff, no changes diff, one change update to parent commit one
change

Time

B Watchman on ® Watchman off

o
institute for
17-214 37 SO

Version control for a monorepo

» Sparse checkouts = 10x faster clones and pulls
— clone and pull download only the commit metadata, omit the files

— When a user performs an operation that needs the contents of files (such
as checkout), download the file contents on demand

remotefilelog

= Git

Time

W Basic Hg

i

17-214 large rebase large pull clone institute AF%

RESEARCH

Summary

* DevOps brings development and operations together
— Well-attuned to a modern development process

* Monorepos provide convenience, can reduce developer effort
— ...atthe expense of requiring custom tooling

[J
institute for
17-214 39 SO

