
1 17-214

Principles	of	Software	Construction:					 														
Objects,	Design,	and	Concurrency	
	
Part	4:		et	cetera	
	
Toward	SE	in	practice:	DevOps	and	branch	management	
	
Josh	Bloch 	 	Charlie	Garrod	

2 17-214

Administrivia	

•  Homework	6	available	
–  Checkpoint	deadline	tonight	
–  Due	next	Wednesday,	April	29th	

3 17-214

Key	concepts	from	last	Thursday	

•  SE	empirical	methods:		Test-driven	development	case	study	
•  Version	and	release	management	

4 17-214

Today:		Software	engineering	in	practice	

•  Release	management,	introduction	to	DevOps	
•  Choose	your	own	adventure…	
•  Monolithic	repositories	

5 17-214

Consider:		timelines	of	traditional	software	development	

Source:		By	Paulire	-	Own	work,	CC	BY-SA	4.0,	https://commons.wikimedia.org/w/index.php?curid=46634740	

e.g.,	the	Microsoft*	OS	development	history	

6 17-214

Modern	Facebook	release	cycle	(1000+	diffs	/	day)	

7 17-214

Aside:		Canary	testing	

8 17-214

Aside:		Dark	launches	and	A/B	testing	

•  Focuses	on	user	response	to	frontend	changes	rather	than	
performance	of	backend	

•  Measure	user	response	via	metrics:	engagement,	adoption	

9 17-214

Version	management	using	feature	flags	

https://martinfowler.com/articles/feature-toggles.html	
https://docs.microsoft.com/en-us/azure/devops/migrate/phase-features-with-feature-flags?view=azure-devops	

10 17-214

Warning!	Feature	flags	can	be	dangerous	

Knight	Capital	Group	realized	a	$460	million	loss	in	45-minutes,	
going	from	being	the	largest	trader	in	US	equities	to	bankruptcy.	

https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/	

11 17-214

Configuration	management	in	the	modern	world	

Version
control

+
workflows

Build
managers

Package
managers

App markets

+
update

managers

Deployment
managers

+
VMs/

containers

12 17-214

Devs,	Ops,	and	The	Wall	of	Confusion	

https://www.plutora.com/blog/what-is-enterprise-devops
https://www.yudiz.com/welcome-devops-prevent-defects/	
	

13 17-214

DevOps:		Development	/	Operations	

14 17-214

•  Agile	releases!	
•  Easier	to	share	and	

understand	code	
•  Faster	onboarding	
•  Safely	push	code	through	CI/

CD	pipeline	

Two	sides	to	DevOps	

Operations-oriented	
•  Manage	servers	

automatically	
•  Easier	to	identify	and	fix	bugs	
•  Automatic	logging,	

monitoring,	and	operations	

Developer-oriented	

15 17-214

DevOps	ecosystems…	

16 17-214

Principle:	Shared	responsibility	

•  Breakdown	the	wall	of	confusion	
•  Improve	collaboration	between	dev.	and	ops.	teams	
•  Reduce	“throw	it	over	the	fence”	syndrome	
•  Treat	failures	as	a	learning	experience...	

17 17-214

Principle:	Rapid	releases	and	feedback	

•  Remove	the	manual	and	ceremonial	aspects	from	releases	
–  Possibly	continuous	releases	
–  Incremental	rollout;	quick	rollback	

•  Get	feedback	on	your	changes	ASAP	
–  Continuously	measure	quality,	refine	implementation,	and	rerelease	

18 17-214

Principle:	Configuration	as	code	

•  Manage	deployment	config	files	in	your	version	control	system	
–  Travis,	Gradle,	Jenkins,	…	

•  Packaging	and	installation	
–  Docker,	package.json,	setup.py,	pom.xml,	...	

•  Infrastructure	and	deployment	
–  Docker	Compose,	Ansible,	Puppet,	Kubernetes	
–  Manage	servers	and	resources	

•  ...	

19 17-214

Aside:	Docker	and	DockerHub	

https://docs.docker.com/docker-hub/builds/	
https://static.packt-cdn.com/products/9781789137231/graphics/99abf1ea-4efe-4ccd-93c3-b36e80f3263c.png	

●  Build	an	image	for	each	release	
●  Quickly	rollback	to	stable	versions	

$	docker	pull	mysql:8.0	
$	docker	push	christimperley/darjeeling	

20 17-214

Principle:	Automation	everywhere	

https://blog.chef.io/automate-all-the-things/	

21 17-214

DevOps	Summary	

•  DevOps	brings	development	and	operations	together	
–  Automation,	Automation,	Automation	
–  Infrastructure	as	code	

•  Continuous	deployment	is	increasingly	common	
•  Exploit	opportunities	of	continuous	deployment;	perform	

testing	in	production	and	quickly	rollback	
–  Experiment,	measure,	and	improve	

22 17-214

Today:		Software	engineering	in	practice	

•  Introduction	to	DevOps	
•  Choose	your	own	adventure…	

–  Repository	branch	management	
–  A	Java	Puzzler	

•  Monolithic	repositories	

23 17-214

6.	“When	Words	Collide”

public	class	PrintWords	{	
		public	static	void	main(String[]	args)	{	
				System.out.println(
						Words.FIRST	+	"	"	+	Words.SECOND	+	"	"	+	Words.THIRD);	
		}	
}	
	
public	class	Words	{	//	Compile	PrintWords	against	this	version	
		public	static	final	String	FIRST		=	"the";	
		public	static	final	String	SECOND	=	null;	
		public	static	final	String	THIRD		=	"set";	
}	
	
public	class	Words	{	//	Run	against	this	version	
		public	static	final	String	FIRST		=	"physics";	
		public	static	final	String	SECOND	=	"chemistry";	
		public	static	final	String	THIRD		=	"biology";	
}	

2
3

An Evening of Java Puzzlers

24 17-214

What	does	it	print?

public	class	PrintWords	{	
		public	static	void	main(String[]	args)	{	
				System.out.println(
						Words.FIRST	+	"	"	+	Words.SECOND	+	"	"	+	Words.THIRD);	
		}	
}	
	
public	class	Words	{	//	Compile	PrintWords	against	this	version	
		public	static	final	String	FIRST		=	"the";	
		public	static	final	String	SECOND	=	null;	
		public	static	final	String	THIRD		=	"set";	
}	
	
public	class	Words	{	//	Run	against	this	version	
		public	static	final	String	FIRST		=	"physics";	
		public	static	final	String	SECOND	=	"chemistry";	
		public	static	final	String	THIRD		=	"biology";	
}	

2
4

An Evening of Java Puzzlers

(a) the	null	set	
(b) physics	chemistry	biology	
(c) Throws	exception	
(d) None of the above

25 17-214

What	does	it	print?	

(a)	the	null	set	
(b)	physics	chemistry	biology	
(c)	Throws	exception	
(d)	None	of	the	above:	the	chemistry	set	
	
	
	
Java	inlines	constant	variables	

2
5

An Evening of Java Puzzlers

26 17-214

What	exactly	is	a	constant	variable?	

•  Loosely	speaking,	a	final	primitive	or	String	variable	whose	value	
is	a	compile-time	constant	
–  See	JLS3	4.12.4,	13.4.9,	15.28	for	gory	details	

•  Surprisingly,	null	isn’t	a	compile-time	constant	

27 17-214

Another	look

public	class	PrintWords	{	
		public	static	void	main(String[]	args)	{	
				System.out.println(
						Words.FIRST	+	"	"	+	Words.SECOND	+	"	"	+	Words.THIRD);	
		}	
}	
	
public	class	Words	{	//	Compile	PrintWords	against	this	version	
		public	static	final	String	FIRST		=	"the";			//	Constant	variable	
		public	static	final	String	SECOND	=	null;	";	//	Not	a	constant	variable!!!	
		public	static	final	String	THIRD		=	"set";			//	Constant	variable	
}	
	
public	class	Words	{	//	Run	against	this	version	
		public	static	final	String	FIRST		=	"physics";	
		public	static	final	String	SECOND	=	"chemistry";	
		public	static	final	String	THIRD		=	"biology";	
}	

2
7

An Evening of Java Puzzlers

28 17-214

How	do	you	prevent	constants	from	being	inlined?	

//	Utility	function	that	simply	returns	its	argument	
private	static	String	ident(String	s)	{	
		return	s;	
}	
	
//	None	of	these	fields	are	constant	variables!	
public	class	Words	{		
		public	static	final	String	FIRST		=	ident("the");	
		public	static	final	String	SECOND	=	ident(null);	
		public	static	final	String	THIRD		=	ident("set");	
}	

2
8

An Evening of Java Puzzlers

Prints physics	chemistry	biology	

29 17-214

The	Moral	

•  Constant	variable	references	are	inlined	
–  Only	primitives	and	strings	can	be	constant	variables	
–  null	is	not	a	constant	variable	(neither	are	enums)	

•  If	you	change	a	constant’s	value	without	recompiling	its	clients,	
they	break!	
–  Use	constant	variable	only	if	value	will	never	change	
–  Use	ident	method	for	final	primitive	or	string	fields	whose	value	may	

change	

•  For	language	designers	
–  Don’t	inline	constants	in	a	late-binding	language	
–  More	generally,	be	consistent!	

2
9

An Evening of Java Puzzlers

30 17-214

Today:		Software	engineering	in	practice	

•  Introduction	to	DevOps	
•  Choose	your	own	adventure...	

–  Repository	branch	management	
–  A	Java	Puzzler	

•  Monolithic	repositories	

31 17-214

Google:		continuous	deployment,	huge	code	base	

32 17-214

Exponential	growth?	

33 17-214
Google Confidential and Proprietary

● >30,000 developers in 40+ offices

● 13,000+ projects under active development

● 30k submissions per day (1 every 3 seconds)

● Single monolithic code tree with mixed language code

● Development on one branch - submissions at head

● All builds from source

● 30+ sustained code changes per minute with 90+ peaks

● 50% of code changes monthly

● 150+ million test cases / day, > 150 years of test / day

● Supports continuous deployment for all Google teams!

Speed and Scale
2016 numbers

34 17-214

Google	code	base	vs.	Linux	kernel	code	base	

35 17-214

Managing	a	huge	monorepo	

•  Automated	testing…	
•  Lots	of	automation…	
•  Smart	tooling...	

36 17-214

Version	control	for	a	monorepo	

•  Problem:	even	git	is	slow	at	Facebook	scale	
–  1M+	source	control	commands	run	per	day	
–  100K+	commits	per	week	

37 17-214

Version	control	for	a	monorepo	

•  Use	build	system's	file	monitor,	Watchman,	to	see	which	files	
have	changed	à	5x	faster	“status”	command	

38 17-214

Version	control	for	a	monorepo	

•  Sparse	checkouts	à	10x	faster	clones	and	pulls	
–  clone	and	pull	download	only	the	commit	metadata,	omit	the	files	
–  When	a	user	performs	an	operation	that	needs	the	contents	of	files	(such	

as	checkout),	download	the	file	contents	on	demand	

39 17-214

Summary	

•  DevOps	brings	development	and	operations	together	
–  Well-attuned	to	a	modern	development	process	

•  Monorepos	provide	convenience,	can	reduce	developer	effort	
–  …at the expense of requiring custom tooling	

