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Administrivia

• Homework 4a due Thursday, 11:59 p.m.
– Design review meeting is mandatory
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Outline

I. Midterm exam post-mortem – SET problem

II. Permutation generator post-mortem

III. Cryptarithm post-mortem
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Midterm exam results – histograms of raw scores
(Excluding SET)
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Anyone know a simpler expression for this?

if (myDog.hasFleas()) {

return true;

} else {

return false;

}
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Hint: it’s not this

return myDog.hasFleas() ? true : false;
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Please do it this way from now on
We reserve the right to deduct points if you don’t

return myDog.hasFleas();
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SET problem – Card should be immutable 

• Much safer – value can’t change underneath you

• Trivial to use concurrently – no synchronization necessary

• More efficient – can share instances

• Always make simple value classes immutable!
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What’s the best type for a feature?
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What’s the best type for a SET?
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A good, basic solution – features (1/4)
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A good, basic solution – features (1a/4)
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A good, basic solution – fields, constructor, accessors (2/4)
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A good, basic solution – Card methods (3/4)
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A good, basic solution – Object methods (4/4)
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API is simple – client code is pretty
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Why is this solution ⅓ the length of many we received?
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Why is this solution ⅓ the length of many we received?

• Good choice of representation
– Fighting with representation adds verbosity

• Makes good use of the facilities provided for us by the platform
– Object methods on enum

– Utility methods such as Objects.requireNonNull and  List.of

• Makes good use of itself
– Code reuse vs. copy-and-paste
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Using generics to make a reusable thirdInSet method
Generic methods are powerful, but declarations are ugly and complex

private static <T extends Enum<T>> T thirdInSet(T first, T second) {
… // Implementation redacted

}

You can call static method directly from Card.thirdInSet
or dispatch to it from feature enums:
public enum Number { ONE, TWO, THREE;

Number thirdInSet(Number second) {
return Card.thirdInSet(this, second);

}
}

public enum Color { RED, GREEN, PURPLE;
Color thirdInSet(Color second) {

return Card.thirdInSet(this, second);
}

}
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Deep magic: how to “inherit” thirdInSet implementation
Default implementations, added in Java 8, are the secret ingredient

interface Feature<T extends Enum<T> & Feature<T>> { // 🤮🤮🤮🤮🤮🤮
default T thirdInSet(T second) {

… // Implementation redacted
}

}

public enum Number implements Feature<Number> { ONE, TWO, THREE }
public enum Color implements Feature<Color> { RED, GREEN, PURPLE }
public enum Shading implements Feature<Shading> {OUTLINE, STRIPED, SOLID}
public enum Shape implements Feature<Shape> { DIAMOND, SQUIGGLE, OVAL }
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A worthwhile performance tweak to Card
You didn’t need to do this on the exam, but it’s worth it in real life

Replace this

public Card(Number num, Color color, Shading shade, Shape shape);

with this

private Card(Number num, Color color, Shading shade, Shape shape);

private static final List<Card> deck = newDeck();

public static Card of(Number number, Color color, Shading shading,
Shape shape) {

return deck.get(index(number, color, shading, shape));
}

private int index(Number num, Color col, Shading shd, Shape shp) {
return 27*num.ordinal() + 9*col.ordinal() + 3*shd.ordinal() + shp.ordinal();

}

• This is called an instance-controlled class
– Only 81 instances ever exist (one per value)
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Outline

I. Midterm exam post-mortem – SET problem

II. Permutation generator post-mortem

III. Cryptarithm post-mortem
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Design comparison for permutation generator

• Command pattern
– Easy to code

– Reasonably pretty to use:

PermGen.doForAllPermutations(list, (perm) -> { // lambda
if (isSatisfactory(perm))

doSomethingWith(perm);
});

• Iterator pattern
– Tricky to code because algorithm is recursive and Java lacks generators

– Really pretty to use because it works with for-each loop

for (List<Foo> perm : Permutations.of(list))
if (isSatisfactory(perm))

doSomethingWith(perm);

• Performance is similar
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A complete (!), general-purpose permutation generator
using the command pattern
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How do you test a permutation generator?

Make a list of items to permute (consecutive integers do nicely)

For each permutation of the list {
Check that it’s actually a permutation of the list
Check that we haven’t seen it yet
Put it in the set of permutations that we have seen

}

Check that the set of permutations we’ve seen has right size (n!)

Do this for all reasonable values of n, and you’re done!
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And now, in code – this is the whole thing!
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Pros and cons of exhaustive testing

• Pros and cons of exhaustive testing
+ Gives you (nearly) absolute assurance that the unit works

+ Exhaustive tests can be short and elegant

+ You don’t have to worry about what to test

− Rarely feasible. Infeasible for: 

• Nondeterministic code, including most concurrent code

• Large state spaces

• If you can test exhaustively, do!

• If not, you can often approximate it with random testing
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Outline

• Midterm exam post-mortem

• Permutation generator post-mortem

• Cryptarithm post-mortem
– Cryptarithm class (6 slides)

– CryptarithmWordExpression (2 slides)

– Main program (1 slide)
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Cryptarithm class (1/6) – fields
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Cryptarithm class (2/6) – constructor / parser
Sample input argument: ["send", "+", "more", "=", "money"]
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Cryptarithm class (3/6) – word parser
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Cryptarithm class (4/6) – operator parser
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Cryptarithm class (5/6) – solver
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Cryptarithm class (6/6) – solver helper functions
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CryptarithmExpressionContext class
Naïve version; solves 10-digit cryptarithms in about 1 s.
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CryptarithmWordExpression class
Naïve version; solves 10-digit cryptarithms in about 1 s.
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Cryptarithm solver command line program
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Conclusion

• Good habits really matter
– “The way to write a perfect program is to make yourself a perfect 

programmer and then just program naturally.” – Watts  S. Humphrey, 1994

• Don’t just hack it up and say you’ll fix it later
– You probably won’t

– but you will get into the habit of just hacking it up

• Representations matter! Choose carefully.
– If your code is getting ugly, step back and rethink it

– “A week of coding can often save a whole hour of thought.”

• Not enough to be merely correct; code must be clearly correct
– Try to avoid nearly correct.


