
117-214

School of
Computer Science

Principles of Software Construction

’tis a Gift to be Simple or Cleanliness is Next to Godliness

Midterm 1 and Homework 3 Post-Mortem

Josh Bloch Charlie Garrod

217-214

Administrivia

• Homework 4a due Thursday, 11:59 p.m.
– Design review meeting is mandatory

317-214

Outline

I. Midterm exam post-mortem – SET problem

II. Permutation generator post-mortem

III. Cryptarithm post-mortem

417-214

Midterm exam results – histograms of raw scores
(Excluding SET)

517-214

Anyone know a simpler expression for this?

if (myDog.hasFleas()) {

return true;

} else {

return false;

}

617-214

Hint: it’s not this

return myDog.hasFleas() ? true : false;

717-214

Please do it this way from now on
We reserve the right to deduct points if you don’t

return myDog.hasFleas();

817-214

SET problem – Card should be immutable

• Much safer – value can’t change underneath you

• Trivial to use concurrently – no synchronization necessary

• More efficient – can share instances

• Always make simple value classes immutable!

917-214

What’s the best type for a feature?

1017-214

What’s the best type for a SET?

1117-214

A good, basic solution – features (1/4)

1217-214

A good, basic solution – features (1a/4)

1317-214

A good, basic solution – fields, constructor, accessors (2/4)

1417-214

A good, basic solution – Card methods (3/4)

1517-214

A good, basic solution – Object methods (4/4)

1617-214

API is simple – client code is pretty

1717-214

Why is this solution ⅓ the length of many we received?

1817-214

Why is this solution ⅓ the length of many we received?

• Good choice of representation
– Fighting with representation adds verbosity

• Makes good use of the facilities provided for us by the platform
– Object methods on enum

– Utility methods such as Objects.requireNonNull and List.of

• Makes good use of itself
– Code reuse vs. copy-and-paste

1917-214

Using generics to make a reusable thirdInSet method
Generic methods are powerful, but declarations are ugly and complex

private static <T extends Enum<T>> T thirdInSet(T first, T second) {
… // Implementation redacted

}

You can call static method directly from Card.thirdInSet
or dispatch to it from feature enums:
public enum Number { ONE, TWO, THREE;

Number thirdInSet(Number second) {
return Card.thirdInSet(this, second);

}
}

public enum Color { RED, GREEN, PURPLE;
Color thirdInSet(Color second) {

return Card.thirdInSet(this, second);
}

}

2017-214

Deep magic: how to “inherit” thirdInSet implementation
Default implementations, added in Java 8, are the secret ingredient

interface Feature<T extends Enum<T> & Feature<T>> { // 🤮🤮🤮🤮🤮🤮
default T thirdInSet(T second) {

… // Implementation redacted
}

}

public enum Number implements Feature<Number> { ONE, TWO, THREE }
public enum Color implements Feature<Color> { RED, GREEN, PURPLE }
public enum Shading implements Feature<Shading> {OUTLINE, STRIPED, SOLID}
public enum Shape implements Feature<Shape> { DIAMOND, SQUIGGLE, OVAL }

2117-214

A worthwhile performance tweak to Card
You didn’t need to do this on the exam, but it’s worth it in real life

Replace this

public Card(Number num, Color color, Shading shade, Shape shape);

with this

private Card(Number num, Color color, Shading shade, Shape shape);

private static final List<Card> deck = newDeck();

public static Card of(Number number, Color color, Shading shading,
Shape shape) {

return deck.get(index(number, color, shading, shape));
}

private int index(Number num, Color col, Shading shd, Shape shp) {
return 27*num.ordinal() + 9*col.ordinal() + 3*shd.ordinal() + shp.ordinal();

}

• This is called an instance-controlled class
– Only 81 instances ever exist (one per value)

2217-214

Outline

I. Midterm exam post-mortem – SET problem

II. Permutation generator post-mortem

III. Cryptarithm post-mortem

2317-214

Design comparison for permutation generator

• Command pattern
– Easy to code

– Reasonably pretty to use:

PermGen.doForAllPermutations(list, (perm) -> { // lambda
if (isSatisfactory(perm))

doSomethingWith(perm);
});

• Iterator pattern
– Tricky to code because algorithm is recursive and Java lacks generators

– Really pretty to use because it works with for-each loop

for (List<Foo> perm : Permutations.of(list))
if (isSatisfactory(perm))

doSomethingWith(perm);

• Performance is similar

2417-214

A complete (!), general-purpose permutation generator
using the command pattern

2517-214

How do you test a permutation generator?

Make a list of items to permute (consecutive integers do nicely)

For each permutation of the list {
Check that it’s actually a permutation of the list
Check that we haven’t seen it yet
Put it in the set of permutations that we have seen

}

Check that the set of permutations we’ve seen has right size (n!)

Do this for all reasonable values of n, and you’re done!

2617-214

And now, in code – this is the whole thing!

2717-214

Pros and cons of exhaustive testing

• Pros and cons of exhaustive testing
+ Gives you (nearly) absolute assurance that the unit works

+ Exhaustive tests can be short and elegant

+ You don’t have to worry about what to test

− Rarely feasible. Infeasible for:

• Nondeterministic code, including most concurrent code

• Large state spaces

• If you can test exhaustively, do!

• If not, you can often approximate it with random testing

2817-214

Outline

• Midterm exam post-mortem

• Permutation generator post-mortem

• Cryptarithm post-mortem
– Cryptarithm class (6 slides)

– CryptarithmWordExpression (2 slides)

– Main program (1 slide)

2917-214

Cryptarithm class (1/6) – fields

3017-214

Cryptarithm class (2/6) – constructor / parser
Sample input argument: ["send", "+", "more", "=", "money"]

3117-214

Cryptarithm class (3/6) – word parser

3217-214

Cryptarithm class (4/6) – operator parser

3317-214

Cryptarithm class (5/6) – solver

3417-214

Cryptarithm class (6/6) – solver helper functions

3517-214

CryptarithmExpressionContext class
Naïve version; solves 10-digit cryptarithms in about 1 s.

3617-214

CryptarithmWordExpression class
Naïve version; solves 10-digit cryptarithms in about 1 s.

3717-214

Cryptarithm solver command line program

3817-214

Conclusion

• Good habits really matter
– “The way to write a perfect program is to make yourself a perfect

programmer and then just program naturally.” – Watts S. Humphrey, 1994

• Don’t just hack it up and say you’ll fix it later
– You probably won’t

– but you will get into the habit of just hacking it up

• Representations matter! Choose carefully.
– If your code is getting ugly, step back and rethink it

– “A week of coding can often save a whole hour of thought.”

• Not enough to be merely correct; code must be clearly correct
– Try to avoid nearly correct.

