
1 17-214

Principles	of	Software	Construction:					 																			
Objects,	Design,	and	Concurrency	
	
Introduction	to	concurrency	and	GUIs	
	
Josh	Bloch 	 	Charlie	Garrod	

2 17-214

Administrivia	

•  Reading	due	Tuesday:		UML	and	Patterns	26.1	and	26.4	
•  Homework	4a	due	tonight	

–  Homework	4a	feedback	coming	next	week	

•  Homework	4b	due	Thursday,	March	25th	
–  An	aside:		testing	

3 17-214

Key	concepts	from	Tuesday	

•  Internal	representations	matter	
•  Good	code	is	clean	and	concise	
•  Good	coding	habits	matter	

4 17-214

Key	concepts	from	yesterday's	recitation	

•  Discovering	design	patterns	
•  Observer	design	pattern	

5 17-214

Observer	pattern	(a.k.a.	publish/subscribe)	

•  Problem:		Must	notify	other	objects	(observers)	without	
becoming	dependent	on	the	objects	receiving	the	notification	

•  Solution:		Define	a	small	interface	to	define	how	observers	
receive	a	notification,	and	only	depend	on	the	interface	

•  Consequences:	
–  Loose	coupling	between	observers	and	the	source	of	the	notifications	
–  Notifications	can	cause	a	cascade	effect	

See edu.cmu.cs.cs214.rec06.alarmclock.AlarmListener…

6 17-214

Today	

•  The	observer	pattern	
•  Introduction	to	concurrency	
•  Introduction	to	GUIs	

7 17-214

A	thread	is	a	thread	of	execution	

•  Multiple	threads	in	the	same	program	concurrently	
•  Threads	share	the	same	memory	address	space	

–  Changes	made	by	one	thread	may	be	read	by	others	

•  Multithreaded	programming	
–  Also	known	as	shared-memory	multiprocessing	

8 17-214

Threads	vs.	processes	

•  Threads	are	lightweight;	processes	are	heavyweight	
•  Threads	share	address	space;	processes	don't	
•  Threads	require	synchronization;	processes	don't	
•  It's	unsafe	to	kill	threads;	safe	to	kill	processes	

9 17-214

Reasons	to	use	threads	

•  Performance	needed	for	blocking	activities	
•  Performance	on	multi-core	processors	
•  Natural	concurrency	in	the	real-world	
•  Existing	multi-threaded,	managed	run-time	environments	

10 17-214

A	simple	threads	example	

public	interface	Runnable	{		//	java.lang.Runnable	
				public	void	run();	
}	
	
public	static	void	main(String[]	args)	{	
				int	n	=	Integer.parseInt(args[0]);		//	Number	of	threads;	
	
				Runnable	greeter	=	new	Runnable()	{	
								public	void	run()	{	
												System.out.println("Hi	mom!");	
								}	
				};	
	
				for	(int	i	=	0;	i	<	n;	i++)	{	
								new	Thread(greeter).start();	
				}	
}	

11 17-214

A	simple	threads	example	

public	interface	Runnable	{		//	java.lang.Runnable	
				public	void	run();	
}	
	
public	static	void	main(String[]	args)	{	
				int	n	=	Integer.parseInt(args[0]);		//	Number	of	threads;	
	
				Runnable	greeter	=	()	->	System.out.println("Hi	mom!");	
				for	(int	i	=	0;	i	<	n;	i++)	{	
								new	Thread(greeter).start();	
				}	
}	

12 17-214

A	simple	threads	example	

public	interface	Runnable	{		//	java.lang.Runnable	
				public	void	run();	
}	
	
public	static	void	main(String[]	args)	{	
				int	n	=	Integer.parseInt(args[0]);		//	Number	of	threads;	
	
				for	(int	i	=	0;	i	<	n;	i++)	{	
								new	Thread(()	->	System.out.println("Hi	mom!")).start();	
				}	
}	

13 17-214

Aside:		Anonymous	inner	class	scope	in	Java	

public	interface	Runnable	{		//	java.lang.Runnable	
				public	void	run();	
}	
	
public	static	void	main(String[]	args)	{	
				int	n	=	Integer.parseInt(args[0]);		//	Number	of	threads;	
	
				for	(int	i	=	0;	i	<	n;	i++)	{	
								new	Thread(()	->	System.out.println("T"	+	i)).start();	
				}	
}	

won't compile
because i mutates

14 17-214

Aside:		Anonymous	inner	class	scope	in	Java	

public	interface	Runnable	{		//	java.lang.Runnable	
				public	void	run();	
}	
	
public	static	void	main(String[]	args)	{	
				int	n	=	Integer.parseInt(args[0]);		//	Number	of	threads;	
	
				for	(int	i	=	0;	i	<	n;	i++)	{	
								int	j	=	i;		//	j	unchanging	within	each	loop	
								new	Thread(()	->	System.out.println("T"	+	j)).start();	
				}	
}	

j is effectively final

15 17-214

Example:	generating	cryptarithms	

static	List<String>	cryptarithms(String[]	words,	int	start,	int	end)	{	
				List<String>	result	=	new	ArrayList<>();	
				String[]	tokens	=	new	String[]	{"",	"+",	"",	"=",	""};	
	
				//	Check	if	each	adjacent	triple	in	words	is	a	"good"	cryptarithm	
				for	(int	i	=	start;	i	<	end	-	2;	i++)	{	
								tokens[0]	=	words[i];	
								tokens[2]	=	words[i	+	1];	
								tokens[4]	=	words[i	+	2];	
								try	{	
												Cryptarithm	c	=	new	Cryptarithm(tokens);	
												if	(c.solve().size()	==	1)	
																result.add(c.toString());	//	We	found	a	"good"	one	
								}	catch	(IllegalArgumentException	e)	{	
												//	too	many	letters	in	cryptarithm;	ignore	
								}	
				}	
				return	result;	
}	

16 17-214

Single-threaded	driver	

public	static	void	main(String[]	words)	{	
				Instant	start	=	Instant.now();	
				List<String>	cryptarithms	=	cryptarithms(words,	0,	words.length);	
				Instant	end	=	Instant.now();	
	
				Duration	time	=	Duration.between(start,	end);	
				System.out.printf("Time:	%d	ms%n",	time.toMillis());	

	System.out.println(cryptarithms);	
}	

17 17-214

Multithreaded	driver	

public	static	void	main(String[]	args)	throws	InterruptedException	{	
				int	n	=	Integer.parseInt(args[0]);		//	Number	of	threads	
				Instant	startTime	=	Instant.now();	
				String[]	words	=	Arrays.copyOfRange(args,	1,	args.length);	
				int	wordsPerThread	=	words.length	/	n;	
				Thread[]	threads	=	new	Thread[n];	
				Object[]	results	=	new	Object[n];	
				for	(int	i	=	0;	i	<	n;	i++)	{		//	Create	the	threads	
								int	start	=	i	==	0	?	0	:	i	*	wordsPerThread	-	2;	
								int	end	=	i	==	n-1	?	words.length	:	(i	+	1)	*	wordsPerThread;	
								int	j	=	i;	//	Only	constants	can	be	captured	by	lambdas	
								threads[i]	=	new	Thread(()	->	{	
												results[j]	=	cryptarithms(words,	start,	end);		
								});	
				}	
				for	(Thread	t	:	threads)	t.start();	
				for	(Thread	t	:	threads)	t.join();	
				Instant	endTime	=	Instant.now();	
	
				Duration	time	=	Duration.between(startTime,	endTime);	
				System.out.printf("Time:	%d	ms%n",	time.toMillis());	
}	

18 17-214

Cryptarithm	generation	performance	

Generating	cryptarithms	from	The	Cat	in	the	Hat	(1635	words)	
• 		Test	all	consecutive	3-word	sequences	(1633	possibilities)	
• 		12	cores,	24	hyperthreads	
• 		1	thread:	58.1s,	24	threads	5.02s	(11.6x	faster)	

19 17-214

Shared	mutable	state	requires	synchronization	

•  Three	basic	choices:	
1.   Don't	mutate:		share	only	immutable	state	
2.   Don't	share:		isolate	mutable	state	in	individual	threads	
3.  If	you	must	share	mutable	state:		synchronize	properly	

20 17-214

The	challenge	of	synchronization	

•  Not	enough	synchronization:		safety	failure	
–  Incorrect	computation	

•  Too	much	synchronization:		liveness	failure	
–  Possibly:	No	computation	at	all	

21 17-214

Synchronization	in	the	cryptarithm	example	

•  How	did	we	avoid	sync	in	multithreaded	cryptarithm	generator?	
•  Embarrassingly	parallelizable	computation	
•  Each	thread	is	entirely	independent	of	the	others	

–  They	solve	different	cryptarithms…	
–  And	write	results	to	different	array	elements	

•  No	shared	mutable	state	to	speak	of	
–  Main	thread	implicitly	synchronizes	with	workers	using	join	

22 17-214

Today	

•  The	observer	pattern	
•  Introduction	to	concurrency	
•  Introduction	to	GUIs	

23 17-214

Event-based	programming	

•  Style	of	programming	where	control-flow	is	driven	by	(usually	
external)	events	

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(42)
}

public void performAction(ActionEvent e) {
 bigBloatedPowerPointFunction(e);
 withANameSoLongIMadeItTwoMethods(e);
 yesIKnowJavaDoesntWorkLikeThat(e);
}

public void performAction(ActionEvent e) {
 List<String> lst = Arrays.asList(bar);
 foo.peek(40)
}

24 17-214

Examples	of	events	in	GUIs	

•  User	clicks	a	button,	presses	a	key	
•  User	selects	an	item	from	a	list,	an	item	from	a	menu	
•  Mouse	hovers	over	a	widget,	focus	changes	
•  Scrolling,	mouse	wheel	turned	
•  Resizing	a	window,	hiding	a	window	
•  Drag	and	drop	

•  A	packet	arrives	from	a	web	service,	connection	drops,	…	
•  System	shutdown,	…	

25 17-214

Blocking	interaction	with	command-line	interfaces	

Scanner	input	=	new	Scanner(System.in);	
while	(questions.hasNext())	{	

	Question	q	=	question.next();	
	System.out.println(q.toString());	
	String	answer	=	input.nextLine();	
	q.respond(answer);	

}	

26 17-214

Blocking	interactions	with	users	

Game PlayerDealer

newGame

addCards

addCards

getAction

action

[action==hit]	addCard

blocking
execution

27 17-214

Interactions	with	users	through	events	

•  Do	not	block	waiting	for	user	response	
•  Instead,	react	to	user	events	

	

Game PlayerDealer

newGame

addCards

addCards

hit

addCard

28 17-214

An	event-based	GUI	with	a	GUI	framework	

•  Setup	phase	
–  Describe	how	the	GUI	window	should	look	
–  Register	observers	to	handle	events	

•  Execution	
–  Framework	gets	events	from	OS,	processes	events	

•  Your	code	is	mostly	just	event	handlers	

GUI	
Framework	

OS	

Application	

get
event

drawing
commands

next
event

event—
mouse, key,
redraw, …

See edu.cmu.cs.cs214.rec06.alarmclock.AlarmWindow…

29 17-214

GUI	frameworks	in	Java	

•  AWT	–	obsolete	except	as	a	part	of	Swing	
•  Swing	–	widely	used	
•  SWT	–	Little	used	outside	of	Eclipse	
•  JavaFX	–	Billed	as	a	replacement	for	Swing	

–  Released	2008	–	never	gained	traction	
•  A	bunch	of	modern	(web	&	mobile)	frameworks	

–  e.g.,	Android	

30 17-214

GUI	programming	is	inherently	multi-threaded	

•  Swing	Event	dispatch	thread	(EDT)	handles	all	GUI	events	
–  Mouse	events,	keyboard	events,	timer	events,	etc.	

•  No	other	time-consuming	activity	allowed	on	the	EDT	
–  Violating	this	rule	can	cause	liveness	failures	

31 17-214

Ensuring	all	GUI	activity	is	on	the	EDT	

•  Never	make	a	Swing	call	from	any	other	thread	
–  “Swing	calls”	include	Swing	constructors	

•  If	not	on	EDT,	make	Swing	calls	with	invokeLater:	
	
public	static	void	main(String[]	args)	{	
			SwingUtilities.invokeLater(()	->	new	Test().setVisible(true));	
}	

32 17-214

Callbacks	execute	on	the	EDT	

•  You	are	a	guest	on	the	Event	Dispatch	Thread!	
–  Don’t	abuse	the	privilege	

•  If	>	a	few	ms	of	work	to	do,	do	it	off	the	EDT	
–  javax.swing.SwingWorker	designed	for	this	purpose	

33 17-214

Summary	

•  Use	the	observer	pattern	to	decouple	two-way	dependences	
•  Multi-threaded	programming	is	genuinely	hard	

–  Neither	under-	nor	over-synchronize	
–  Immutable	types	are	your	friend	

•  GUI	programming	is	inherently	multi-threaded	
–  Swing	calls	must	be	made	on	the	event	dispatch	thread	
–  No	other	significant	work	should	be	done	on	the	EDT	

34 17-214

Paper	slides	from	lecture	are	scanned	below..	

	11-introduction-to-concurrency-and-guis
	observer-game-paper-slides

