
1 17-214

Principles	of	Software	Construction:					 																			
Objects,	Design,	and	Concurrency	
	
Teams,	branch-based	development,	and	workflows	
	
Josh	Bloch 	 	Charlie	Garrod	

2 17-214

Administrivia	

•  Homework	4c	due	tonight	
–  Can	regain	up	to	75%	of	lost	Homework	4a	credit	

•  Directly	address	TA	comments	
•  Can	turn	in	revisions	Saturday	night	without	affecting	late	days	

•  Homework	5	team	sign-up	deadline	Wednesday	5	p.m.	
•  Midterm	exam	next	Wednesday/Thursday	

–  Practice	exam	released	tomorrow	
–  Exam	review	session	Tuesday	7-9	p.m.	
–  Exam	released	Wednesday	night,	due	Thursday	11:59	p.m.	

3 17-214

Key	concepts	from	the	past	week	

4 17-214

Key	design	principle:		Information	hiding	

•  “When	in	doubt,	leave	it	out.”	

5 17-214

Minimize	Mutability	

•  Parameter	types	should	be	immutable	
–  Eliminates	need	for	defensive	copying	

•  Classes	should	be	immutable	unless	there’s	a	good	reason	to	do	
otherwise	
–  	Advantages:	simple,	thread-safe,	reusable	
–  	Disadvantage:	separate	object	for	each	value	

•  If	mutable,	keep	state-space	small,	well-defined	
–  	Make	clear	when	it’s	legal	to	call	which	method	

Bad: 		Date	

Good:		java.time.Instant	

6 17-214

“Fail	Fast”	–	prevent	failure,	or	fail	quickly,	predictably,	
and	informatively	

•  Ideally,	API	should	make	misuse	impossible	
–  Fail	at	compile	time	or	sooner	

•  Misuse	that’s	statically	detectable	is	second	best	
–  Fail	at	build	time,	with	proper	tooling	

•  Misuse	leading	to	prompt	runtime	failure	is	third	best	
–  Fail	when	first	erroneous	call	is	made	
– Method	should	succeed	or	have	no	effect	(failure-atomicity)	

•  Misuse	that	can	lie	undetected	is	what	nightmares	
are	made	of	
–  Fail	at	an	undetermined	place	and	time	in	the	future	

7 17-214

Don’t	let	your	output	become	your	de	facto	API	

•  Document	the	fact	that	output	formats	may	evolve	in	the	future	
•  Provide	programmatic	access	to	all	data	available	in	string	form	

8 17-214

Today:		Toward	software	engineering	in	practice	

•  Two	puzzlers	
•  Software	engineering	for	teams	

–  Challenges	of	working	as	a	team	
–  Tools	and	processes	for	teams	

•  Branch-based	development,	et	al.	

9 17-214

1.	“Time	for	a	Change” (2002)	

If	you	pay	$2.00	for	a	gasket	that	costs	
$1.10,	how	much	change	do	you	get?	

public	class	Change	{	
				public	static	void	main(String	args[])	{	
								System.out.println(2.00	-	1.10);	
				}	
}	

From An Evening Of Puzzlers by Josh Bloch

10 17-214

What	does	it	print?	

(a) 0.9
(b) 0.90
(c) It varies
(d) None of the above

	
	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								System.out.println(2.00	-	1.10);	
				}	
}	

11 17-214

(a)	0.9	
(b)	0.90	
(c)	It	varies	
(d)	None	of	the	above:	0.8999999999999999	

Decimal	values	can't	be	represented	exactly	
by float or double	

What	does	it	print?	

12 17-214

Another	look	

public	class	Change	{	
				public	static	void	main(String	args[])	{	
								System.out.println(2.00	-	1.10);	
				}	
}	

13 17-214

How	do	you	fix	it?	

//	You	could	fix	it	this	way...	
import	java.math.BigDecimal;	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								System.out.println(
												new	BigDecimal("2.00").subtract(
																new	BigDecimal("1.10")));	
				}	
}	

	
//	...or	you	could	fix	it	this	way	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								System.out.println(200	-	110);	
				}	
}	

Prints	0.90	

Prints	90	

14 17-214

The	moral	

•  Avoid float and double	where	exact	answers	are	required	
–  For	example,	when	dealing	with	money	

•  Use	BigDecimal,	int,	or	long	instead	

15 17-214

2.	“A	Change	is	Gonna	Come”	

If	you	pay	$2.00	for	a	gasket	that	costs	
$1.10,	how	much	change	do	you	get?	

	
import	java.math.BigDecimal;	
	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								BigDecimal	payment	=	new	BigDecimal(2.00);	
								BigDecimal	cost	=	new	BigDecimal(1.10);	
								System.out.println(payment.subtract(cost));	
				}	
}	

16 17-214

What	does	it	print?	

import	java.math.BigDecimal;	
	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								BigDecimal	payment	=	new	BigDecimal(2.00);	
								BigDecimal	cost	=	new	BigDecimal(1.10);	
								System.out.println(payment.subtract(cost));	
				}	
}	

(a)	0.9	
(b)	0.90	
(c)	0.8999999999999999	
(d)	None of the above

17 17-214

(a)	0.9	
(b)	0.90	
(c)	0.8999999999999999	
(d)	None	of	the	above:	
0.89999999999999991118215802998747
6766109466552734375	

What	does	it	print?	

18 17-214

Another	look	

	
	
import	java.math.BigDecimal;	
	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								BigDecimal	payment	=	new	BigDecimal(2.00);	
								BigDecimal	cost	=	new	BigDecimal(1.10);	
								System.out.println(payment.subtract(cost));	
				}	
}	

We	used	the	wrong	BigDecimal	constructor.	
	
The	spec	says:	
 public	BigDecimal(double	val)	
Translates	a	double	into	a	BigDecimal	which	is	the	exact	
decimal	representation	of	the	double's	binary	floating-point	
value.		

19 17-214

How	do	you	fix	it?	

import	java.math.BigDecimal;	
	
public	class	Change	{	
				public	static	void	main(String	args[])	{	
								BigDecimal	payment	=	new	BigDecimal("2.00");	
								BigDecimal	cost	=	new	BigDecimal("1.10");	
								System.out.println(payment.subtract(cost));	
				}	
}	

Prints	0.90	

20 17-214

The moral

•  Use new	BigDecimal(String),
not new	BigDecimal(double)	

•  BigDecimal.valueOf(double) is better, but not
perfect
–  Use it for non-constant values.

•  For API designers
–  Make it easy to do the commonly correct thing
–  Make it hard to misuse
–  Make it possible to do exotic things

21 17-214

Today:		Toward	software	engineering	in	practice	

•  Two	puzzlers	
•  Software	engineering	for	teams	

–  Challenges	of	working	as	a	team	
–  Tools	and	processes	for	teams	

•  Branch-based	development,	et	al.	

22 17-214

Software	engineering	is	inherently	collaborative	

23 17-214

Challenges	of	working	as	a	team:	

24 17-214

A	teaching	challenge?	

•  https://forms.gle/UF57hiJdfnkVvtxd9	
–  Suppose	you	are	instructing	214/514,	and	two	students	complain	to	you	

about	their	third	Homework	5	teammate.		The	two	students	did	all	the	
work	implementing	the	framework	and	sample	plugins,	and	the	third	
teammate	did	nothing.	
	
What	do	you	do?	

25 17-214

Challenges	of	working	as	a	team:	Aligning	expectations	

•  How	does	the	team	make	decisions?	
•  How	do	you	divide	the	work?	
•  Does	the	team	share	the	same	goals	and	incentives?	
•  What	happens	when	work	isn’t	completed	as	expected?	
•  When	do	team	members	like	to	work?	
•  What	other	commitments	do	your	team	members	have?	
•  Where	will	you	get	the	work	done?	
•  ...	

26 17-214

Decide	what	to	build,	then	design	the	API	

//	A	collection	of	elements	(root	of	the	collection	hierarchy)	
public	interface	Collection<E>	{	
	
				//	Ensures	that	collection	contains	o	
				boolean	add(E	o);	
	
				//	Removes	an	instance	of	o	from	collection,	if	present	
				boolean	remove(Object	o);	
	
				//	Returns	true	iff	collection	contains	o	
				boolean	contains(Object	o)	;	
	
				//	Returns	number	of	elements	in	collection	
				int	size()	;	
	
				//	Returns	true	if	collection	is	empty	
				boolean	isEmpty();	
	
				...		//	Remainder	omitted	
}	

Basic	Process:	
(1)  Determine	minimal	

feature	set	
(2)  Draw	UML	on	a	

whiteboard.	
(3)  Sketch	out	your	API	on	

paper	
(4)  Write	example	code	
(5)  Review	
(6)  Repeat	

27 17-214

Break	up	tasks	into	GitHub	Issues	

Issues	can	represent	both	tasks	
and	bugs	that	need	to	be	fixed.	
	
Issues	should	be:	
●  a	reasonable	chunk	of	work	
●  focused	and	cohesive	

28 17-214

Break	up	tasks	into	GitHub	Issues	

29 17-214

Use	labels	to	indicate	priority	and	differentiate	bugs	from	features	

30 17-214

Consider	using	milestones	(e.g.,	HW5a,	HW5b)	

31 17-214

How	does	a	large	software	project	
get	to	be	one	year	late?	

32 17-214

How	does	a	large	software	project	
get	to	be	one	year	late?	
One	day	at	a	time.	
— 	Fred	Brooks,The	Mythical	Man-Month	

https://en.wikipedia.org/wiki/The_Mythical_Man-Month

33 17-214

Use	a	simple	Kanban	board	to	measure	progress	

34 17-214

Use	a	simple	Kanban	board	to	measure	progress	

35 17-214

Single-branch	development	doesn’t	scale	to	teams	

Master	

36 17-214

Use	simple	branch-based	development	

Create	a	new	branch	for	each	feature.	
●  allows	parallel	development	
●  no	dealing	with	half-finished	code	
●  no	merge	conflicts!	

Every	commit	to	“master”	should	pass	
your	CI	checks.	

37 17-214

Use	GitHub	pull	requests	to	review	and	merge	changes	

https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request	

38 17-214

Ask	your	teammates	to	review	your	pull	request	

https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-request-reviews	

39 17-214

Bonus	tip:	Automatically	close	issues	in	commits/PRs	

Use	any	of	the	following	words:	
	
●  close	#N,	closes	#N,	closed	#N	
●  fix	#N,	fixes	#N,	fixed	#N	
●  resolve	#N,	resolves	#N,	resolved	#N	

40 17-214

Summary	

•  Identify	and	discuss	risks	within	your	team	
–  Get	to	know	your	teammates,	and	agree	on	your	process	

•  Use	standard	tools	to	improve	your	process	

