
117-214

Principles of Software Construction:
Objects, Design, and Concurrency

Part 3: Concurrency

Introduction to concurrency, part 3

Concurrency primitives, libraries, and design patterns

Josh Bloch Charlie Garrod

217-214

Administrivia

• HW 5a due tomorrow at 9:00AM EDT
– present framework design in lieu of recitation

• Optional reading due today: JCiP 11.3 – 11.4

• No class Thursday – “Carnival”
– Enjoy it!

• Optional reading due Thursday: JCiP Chapter 10

• Optional reading due new Tuesday: JCiP Chapter 12
– Good testing stuff here! (Useful for sequential as well as concurrent programs)

317-214

Key concepts from Thursday

417-214

Lock splitting for increased concurrency
Review: what’s the bug in this code?

public class BankAccount {
private long balance;

public BankAccount(long balance) {
this.balance = balance;

}
static void transferFrom(BankAccount source,

BankAccount dest, long amount) {
synchronized(source) {

synchronized(dest) {
source.balance -= amount;
dest.balance += amount;

}
}

}
…

}

517-214

Avoiding deadlock

• The waits-for graph represents dependencies between threads
– Each node in the graph represents a thread

– An edge T1→T2 represents that thread T1 is waiting for a lock T2 owns

• Deadlock has occurred if the waits-for graph contains a cycle

• One way to avoid deadlock: locking protocols that avoid cycles

a
b

c

d

f

e

h

g

i

617-214

Avoiding deadlock by ordering lock acquisition

public class BankAccount {
private long balance;
private final long id = SerialNumber.generateSerialNumber();

public BankAccount(long balance) {
this.balance = balance;

}

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {

BankAccount first = source.id < dest.id ? source : dest;
BankAccount second = source.id < dest.id ? dest : source;
synchronized (first) {

synchronized (second) {
source.balance -= amount;
dest.balance += amount;

}
}

}
}

717-214

Using a private lock to encapsulate synchronization

@ThreadSafe public class BankAccount {
@GuardedBy("lock") private long balance;
private final long id = SerialNumber.generateSerialNumber();
private final Object lock = new Object();

public BankAccount(long balance) { this.balance = balance; }

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {

BankAccount first = source.id < dest.id ? source : dest;
BankAccount second = source.id < dest.id ? dest : source;
synchronized (first.lock) {

synchronized (second.lock) {
source.balance -= amount;
dest.balance += amount;

}
}

}
}

817-214

Java Concurrency in Practice annotations

@ThreadSafe public class BankAccount {
@GuardedBy("lock") private long balance;
private final long id = SerialNumber.generateSerialNumber();
private final Object lock = new Object();

public BankAccount(long balance) { this.balance = balance; }

static void transferFrom(BankAccount source,
BankAccount dest, long amount) {

BankAccount first = source.id < dest.id ? source : dest;
BankAccount second = source.id < dest.id ? dest : source;
synchronized (first.lock) {

synchronized (second.lock) {
source.balance -= amount;
dest.balance += amount;

}
}

}
}

@ThreadSafe
@NotThreadSafe
@Immutable
@GuardedBy

917-214

Today

I. Strategies for safety

II. Building thread-safe data structures – primitives for concurrency

III. Java libraries for concurrency (java.util.concurrent)

1017-214

Policies for thread safety
Remember: shared mutable state must be synchronized

1. Thread-confined state – mutate but don’t share

2. Shared read-only state – share but don’t mutate

3. Shared thread-safe – object synchronizes itself internally

4. Shared guarded – client synchronizes object(s) externally

1117-214

1. Thread-confined state - three kinds

• Stack-confined
– Primitive local variables are never shared between threads

– Fast and cheap

• Unshared object references
– The thread that creates an object must take action to share (“publish”)

– e.g., put it in a shared collection, store it in a static variable

• Thread-local variables
– Shared object with a separate value for each thread

– Rarely needed but invaluable (e.g., for user ID or transaction ID)

class ThreadLocal<T> {
ThreadLocal() ; // Initial value for each thread is null
static <S> ThreadLocal<S> withInitial(Supplier<S> supplier);

void set(T value); // Sets value for current thread
T get(); // Gets value for current thread

}

1217-214

2. Shared read-only state

• Immutable data is always safe to share

• So is mutable data that isn’t mutated

1317-214

3. Shared thread-safe state

• Thread-safe objects that perform internal synchronization

• You can build your own, but not for the faint of heart

• You’re better off using ones from java.util.concurrent

• e.g., AtomicLong from our SerialNumber example

• j.u.c also provides skeletal implementations

1417-214

4. Shared guarded state

• Shared objects that must be locked by user
– Most examples in the last two lectures. e.g., BankAccount

• Can be error prone: burden is on user

• High concurrency can be difficult to achieve
– Lock granularity is typically the entire object

• You’re generally better off avoiding guarded objects

1517-214

Outline

I. Strategies for safety

II. Building thread-safe data structures – primitives for concurrency

III. Java libraries for concurrency (java.util.concurrent)

1617-214

wait/notify – a primitive for cooperation
The basic idea is simple…

• State (fields) are guarded by a lock

• Sometimes, a thread can’t proceed till state is “right”
– So it waits with wait

– Automatically drops lock while waiting

• Thread that makes state right wakes waiting thread(s) with notify
– Waking thread must hold lock when it calls notify

– Waiting thread automatically acquires lock when it wakes up

1717-214

But the devil is in the details
Never invoke wait outside a loop!

• Loop tests condition before and after waiting

• Test before skips wait if condition already holds
– Necessary to ensure liveness

– Without it, thread can wait forever!

• Testing after waiting ensure safety
– Condition may not be true when thread wakes up

– If thread proceeds with action, it can destroy invariants!

1817-214

All of your waits should look like this

synchronized (obj) {
while (<condition does not hold>) {

obj.wait();
}

... // Perform action appropriate to condition
}

1917-214

Why can a thread wake from a wait when condition
does not hold?

• Another thread can slip in between notify& wake

• Another thread can invoke notify accidentally or maliciously
when condition does not hold
– This is a flaw in Java locking design!

– Can work around flaw by using private lock object

• Notifier can be liberal in waking threads
– Using notifyAll is good practice, but can cause extra wakeups

• Waiting thread can wake up without a notify(!)
– Known as a spurious wakeup

2017-214

Defining your own thread-safe objects

• Identify variables that represent the object's state

• Identify invariants that constrain the state variables

• Establish a policy for maintaining invariants

2117-214

A toy example: Read-write locks (a.k.a. shared/exclusive locks)

private final RwLock lock = new RwLock();

lock.readLock();
try {

// Do stuff that requires read (shared) lock
} finally {

lock.unlock();
}

lock.writeLock();
try {

// Do stuff that requires write (exclusive) lock
} finally {

lock.unlock();
}

Sample client code:

2217-214

A toy example: Read-write locks (implementation 1/2)

@ThreadSafe public class RwLock {
/** The number of threads holding lock for read. */
@GuardedBy("this") // Intrinsic lock on RwLock object
private int numReaders = 0;

/** Whether lock is held for write. */
@GuardedBy("this")
private boolean writeLocked = false;

// Invariant: !(numReaders != 0 && writeLocked)

public synchronized void readLock() throws InterruptedException {
while (writeLocked) {

wait();
}
numReaders++;

}

2317-214

A toy example: Read-write locks (implementation 2/2)

public synchronized void writeLock() throws InterruptedException {
while (numReaders != 0 || writeLocked) {

wait();
}
writeLocked = true;

}

public synchronized void unlock() {
if (numReaders > 0) {

numReaders--;
} else if (writeLocked) {

writeLocked = false;
} else {

throw new IllegalStateException("Lock not held");
}
notifyAll(); // Wake any waiters

}
}

2417-214

Advice for building thread-safe objects

• Do as little as possible in synchronized region: get in, get out
– Obtain lock

– Examine shared data

– Transform as necessary

– Drop the lock

• If you must do something slow, move it outside the synchronized region

2517-214

Documentation

• Document a class’s thread safety guarantees for its clients

• Document a class’s synchronization policy for its maintainers

• Use @ThreadSafe and @GuardedBy annotations
– And any prose that is required

2617-214

Summary of our RwLock example

• Generally, avoid wait/notify
– Java.util.concurrent provides better alternatives

• Never invoke wait outside a loop
– Must check condition before and after waking

• Generally use notifyAll, not notify

• Do not use our RwLock – it's just a toy!

2717-214

Outline

I. Strategies for safety

II. Building thread-safe data structures – primitives for concurrency

III. Java libraries for concurrency (java.util.concurrent)

2817-214

java.util.concurrent is BIG (1)

1. Atomic variables: java.util.concurrent.atomic
– Support various atomic read-modify-write ops

2. Concurrent collections
– Shared maps, sets, lists

3. Data exchange collections
– Blocking queues, deques, etc.

4. Executor framework
– Tasks, futures, thread pools, completion service, etc.

5. Synchronizers
– Semaphores, cyclic barriers, countdown latches, etc.

6. Locks: java.util.concurrent.locks
– Read-write locks, conditions, etc.

2917-214

java.util.concurrent is BIG (2)

• Pre-packaged functionality: java.util.Arrays
– Parallel sort, parallel prefix

• Completable futures
– Multistage asynchronous concurrent computations

• Flows
– Publish/subscribe service

• And more
– It just keeps growing

3017-214

1. Overview of java.util.concurrent.atomic

• Atomic{Boolean,Integer,Long}

– Boxed primitives that can be updated atomically

• AtomicReference<T>

– Object reference that can be updated atomically

• Atomic{Integer,Long,Reference}Array

– Array whose elements may be updated atomically

• Atomic{Integer,Long,Reference}FieldUpdater

– Reflection-based utility enabling atomic updates to volatile fields

– Advanced/obscure. Offers space performance in exchange for ugliness.

• LongAdder, DoubleAdder

– Highly concurrent sums – use case: parallel statistics gathering

• LongAccumulator, DoubleAccumulator

– Generalization of adder to arbitrary functions (max, min, etc.)

3117-214

Example: AtomicLong

class AtomicLong { // We used this in generateSerialNumber()

long getAndIncrement(); // We used this method

long get();

void set(long newValue);

long getAndSet(long newValue);

long getAndAdd(long delta);

boolean compareAndSet(long expectedValue, long newValue);

long getAndUpdate(LongUnaryOperator updateFunction);

long updateAndGet(LongUnaryOperator updateFunction);

…

}

3217-214

2. Concurrent collections

• Provide high performance and scalability

Unsynchronized Concurrent

HashMap ConcurrentHashMap

HashSet ConcurrentHashSet

TreeMap ConcurrentSkipListMap

TreeSet ConcurrentSkipListSet

3317-214

You can’t prevent concurrent use of a concurrent collection

• This works for synchronized collections…
Map<String, String> syncMap =

Collections.synchronizedMap(new HashMap<>());

synchronized(syncMap) {

if (!syncMap.containsKey("foo"))

syncMap.put("foo", "bar");

}

• But not for concurrent collections
– They do their own internal synchronization

– Acquiring intrinsic lock will not exclude concurrent activity

– Never synchronize on a concurrent collection!

3417-214

Instead, use atomic read-modify-write methods

• V putIfAbsent(K key, V value);

• boolean remove(Object key, Object value);

• V replace(K key, V value);

• boolean replace(K key, V oldValue, V newValue);

• V compute(K key, BiFunction<K,V,V> remappingFn);

• V computeIfAbsent(K key, Function<K,V> mappingFn);

• V computeIfPresent(K key, BiFunction<K,V,V> remapFn);

• V merge(K key, V value, BiFunction<V,V,V> remapFn);

3517-214

Concurrent collection example: canonicalizing map

private final ConcurrentMap<T,T> map = new ConcurrentHashMap<>();

public T intern(T t) {

String previousValue = map.putIfAbsent(t, t);

return previousValue == null ? t : previousValue;

}

3617-214

java.util.concurrent.ConcurrentHashMap

• Uses many techniques used to achieve high concurrency
– Over 6,000 lines of code

• The simplest of these is lock striping
– Multiple locks, each dedicated to a region of hash table

Locks

Hash table

3717-214

Aside: the producer-consumer pattern

• Goal: Decouple the producer and the consumer of some data

• Consequences:
– Removes code dependency between producers and consumers

– Producers and consumers can produce and consume at different rates

3817-214

3. Data exchange collections summary
Hold elements for processing by another thread (producer/consumer)

• BlockingQueue – Supports blocking ops
– ArrayBlockingQueue (bounded), LinkedBlockingQueue (unbounded)

– PriorityBlockingQueue, DelayQueue(serve no elt before its time)

– SynchronousQueue (holds no elements)

• BlockingDeque – Supports blocking ops
– LinkedBlockingDeque

• TransferQueue – BlockingQueue in which producers may
wait for consumers to receive elements
– LinkedTransferQueue

3917-214

Summary of BlockingQueue methods

Throws exception Special value Blocks Times out

Insert add(e) offer(e) put(e) offer(e, time, unit)

Remove remove() poll() take() poll(time, unit)

Examine element() peek() n/a n/a

4017-214

Summary of BlockingDeque methods

First element (head) methods

Last element (tail) methods

Throws exception Returns null Blocks Times out

Insert addFirst(e) offerFirst(e) putFirst(e)
offerFirst(e,

time, unit)

Remove removeFirst() pollFirst() takeFirst() pollFirst(time,unit)

Examine getFirst() peekFirst() n/a n/a

Throws exception Returns null Blocks Times out

Insert addLast(e) offerLast(e) putLast(e)
offerLast(e,

time, unit)

Remove removeLast() pollLast() takeLast() pollLast(time,unit)

Examine getLast() peekLast() n/a n/a

4117-214

4. Executor framework overview

• Flexible interface-based task execution facility

• Key abstractions
– Runnable – basic task

– Callable<T> – task that returns a value (and can throw an exception)

– Executor – machine that executes tasks

– Future<T> – a promise to give you a T

– Executor service – Executor on steroids

• Lets you manage termination

• Can produce Future instances

4217-214

Executors – your one-stop shop for executor services

• Executors.newSingleThreadExecutor()
– A single background thread

• newFixedThreadPool(int nThreads)
– A fixed number of background threads

• Executors.newCachedThreadPool()
– Grows in response to demand

4317-214

A very simple (but useful) executor service example

• Background execution in a long-lived worker thread

– To start the worker thread:
ExecutorService executor =
Executors.newSingleThreadExecutor();

– To submit a task for execution:
executor.execute(runnable);

– To terminate gracefully:
executor.shutdown(); // Allows tasks to finish

4417-214

Other things you can do with an executor service

• Wait for a task to complete

Foo foo = executorSvc.submit(callable).get();

• Wait for any or all of a collection of tasks to complete

invoke{Any,All}(Collection<Callable<T>> tasks)

• Retrieve results as tasks complete

ExecutorCompletionService

• Schedule tasks for execution at a time in the future

ScheduledThreadPoolExecutor

• etc., ad infinitum

4517-214

The fork-join pattern

if (my portion of the work is small)
do the work directly

else
split my work into pieces
recursively process the pieces

4617-214

ForkJoinPool: executor service for ForkJoinTask
Dynamic, fine-grained parallelism with recursive task splitting

class SumOfSquaresTask extends RecursiveAction {
final long[] a; final int lo, hi; long sum;
SumOfSquaresTask(long[] array, int low, int high) {

a = array; lo = low; hi = high;
}

protected void compute() {
if (h - l < THRESHOLD) {

for (int i = l; i < h; ++i)
sum += a[i] * a[i];

} else {
int mid = (lo + hi) >>> 1;
SumOfSquaresTask left = new SumOfSquaresTask(a, lo, mid);
left.fork(); // Pushes task for async execution
SumOfSquaresTask right = new SumOfSquaresTask(a, mid, hi);
right.compute();
right.join(); // pops/runs or helps or waits
sum = left.sum + right.sum;

}
}

}

4717-214

5. Overview of synchronizers

• CountDownLatch
– One or more threads wait for others to count down from n to zero

• CyclicBarrier
– a set of threads wait for each other to be ready (repeatedly if desired)

• Semaphore
– Like a lock with a maximum number of holders (“permits”)

• Phaser – Cyclic barrier on steroids
– Extremely flexible and complex

• AbstractQueuedSynchronizer – roll your own!

4817-214

6. Overview of java.util.concurrency.locks (1/2)

• ReentrantReadWriteLock
– Shared/Exclusive mode locks with tons of options

• Fairness policy

• Lock downgrading

• Interruption of lock acquisition

• Condition support

• Instrumentation

• ReentrantLock
– Like Java’s intrinsic locks

– But with more bells and whistles

4917-214

Overview of java.util.concurrency.locks (2/2)

• Condition

– wait/notify/notifyAllwith multiple wait sets per object

• AbstractQueuedSynchronizer

– Skeletal implementation of locks relying on FIFO wait queue

• AbstractOwnableSynchronizer,
AbstractQueuedLongSynchronizer

– Fancier skeletal implementations

5017-214

ReentrantReadWriteLock example
Does this look vaguely familiar?

final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();

rwl.readLock().lock();

try {

// Do stuff that requires read (shared) lock

} finally {

rwl.readLock().unlock();

}

rwl.writeLock().lock();

try {

// Do stuff that requires write (exclusive) lock

} finally {

rwl.writeLock().unlock();

}

5117-214

Summary

• java.util.concurrent is big and complex

• But it’s well designed and engineered
– Easy to do simple things

– Possible to do complex things

• Executor framework does for execution what collections did for
aggregation

• This lecture just scratched the surface
– But you know the lay of the land and the javadoc is good

• Always better to use j.u.c than to roll your own!

