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Abstract

Footprints form a crucial piece of evidence in crime scenes, which forensic experts
and law enforcement agencies depend on to build incriminating evidence against a
suspect, especially in cases of recidivism. In this paper we describe a system to
perform 2 machine learning tasks on footprint data that are of application to law
enforcement tasks. 1) footprint detection, to detect if the print belongs to the right
or left foot, and 2) Footprint matching, which given prior footprint data aims to
match newer footprints. We further extend this work by performing some analysis
and exploration, and pattern discover using some Machine Learning Techniques.

1 Dataset

Our dataset consists of multiple footprints, belonging to either left/right foot. The footprints are
not crisp, and have at times multiple different orientations along the principal axis, along with non
trivial form of noise. The random degrees of orientation, make it hard to use simple computer vision
techniques, since a lot of standard models are not rotation invariant, at the same time the footprint is
occluded due to its rotation, making it hard to get the entire template of the footprint. For the task 1,
our dataset consists of 5000 images of each foot. For Task 2 , we have 1000 gold standard images to
which we need to match a set of noisy 10000 images.

1.1 Preprocessing

Figure 1: The Preprocessing pipeline for the Raw images.
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In order to reduce the noise, we apply a Non Local Means denoising filter [1]. From the denoised
image we then threshold the image in order to extract the image parts of interest for our downstream
task.

Next we perform rotation inorder to reorient the principle axis of the foot with the vertical axis. We
again apply a gaussian filter to find the region of the image with information, then depending on
the amount of white space in the image, we perform a linear regression by keeping either the x or y
axis as the dependent variable. This gives us the primary orientation of the image. (Note, we do not
perform Hough transform here, inorder to explicitly use tools and techniques learnt in class)

We then compute the angle of rotation of the image using the previously computed value of the re-
gression line and its intercept with the y axis. We then rotate the image using an affine transformation,
that rotates the image the desired angle. Note, the given method will reorient the image along its
principal axis, however it will not ensure the image from being upright. This is not a very significant
issue in the downstream task and we will solve this using data augmentation.

2 Learning

Figure 2: The proposed Neural Model for the Left Right detection task.

2.1 Task 1: Left/Right Detection

Given the dataset we, first train a deep convolution neural model and treating the left & right footprint
detection as a binary classification. Our last layer consists of a sigmoid activation which we train to
optimize the cross entropy loss, using the modification of SGD that allows faster convergence, called
Adam [2], using the software package, Keras [4]. All the layers use Rectified Linear Units [5] as
activations. After the convolution layers, we have a series of dense, fully connected layers along with
different values of dropout to ensure robustness by preventing overfitting [3].

We also augment the data by flipping the images long the vertical axis and adding them from one
class to the other. We further also rotate all images 180 degrees. This is done inorder to ensure
that the model can also learn from images that were not upright after the initial reorientation to the
principal axis.

2.2 Task 2: Footprint matching

This task is a little more difficult as compared to the previous task, here we are given 1000 gold
standard images and we are to match these to 10000 raw images. One can think of this as a 1000-way
classification as opposed to the previous task which is just binary classification. However, given that
we have just one gold image per class, it is difficult to train a supervised model, given the lack of
training data. We thus approach this problem in a fundamentally different manner. We rather treat
this as a information retrieval problem wherein we aim to find the image which is closest to the gold
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Figure 3: Illustrative example of our approach, modeled as an IR problem. the flattened vector of the
images is transposed and dot product is taken with the flattened gold set.

image. Let the test image be described by the vector xi. Here xi ∈ R35000. Let the gold image be
described by the vector yj , where yj ∈ R35000. Therefore,

j∗i = argmin
j

d(xi, yj) (1)

Here d(, ) is a distance function that can compute a similarity between the two vectors in the R35000

space.

j∗i = argmin
j

x>i .yj (2)

We first use the dot product as a measure of similarity between the images. However, we noticed that
dot product had a tendency to increase when a given image had a greater amount of brighter regions.
Thus , most of the images matched with brighter images from the gold set rather than aligning with
the correct image. In order to mitigate this effect of the simple dot product, we normalize each vector
with its l2 norm. (This corresponds to the cosine of the angle between the two vectors, and since its
normalised by the magnitude of each image vector, reduces the tendency for the brighter images to
show up.)

j∗i = argmin
j

x>i .yj
||xi||2||yj ||2

(3)

Just like in the previous task, we augment the dIn this section we will describe the results for the
various tasks. ata, with flipped as well as images that are rotated to be upside down. Instead of
augmenting the query data, which would result in 10,000 × 4 examples, we simply augment the gold
images. This results, in 4000 gold images, and thus less comparisons are required to be made. (While
it can be argued that we do not gain much in computational efficiency, we have a large gain in space
efficiency as now, we do not need to store vector representations of the augmented query images)

3 Results

3.1 Task 1

Development Set Validation Set Test Set
PP 88.67% * *
PP+Rot 93.23% * *
PP+Rot+Flip 96.65% 93.3% 93.5%

Table 1: PP: Preprocessing, Rot: Rotate by 180 degrees, Flip: Flipping images to augment each class
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Table 1 shows the results of Task 1 and also how we improve by augmenting the data by rotating
and flipping the images. Note the development set here was created using the provided data and was
5% of the training data. as expected due to the lesser amount of Development data we see that the
model performance is lower for the Validation and Test Data, which suggests we are overfitting our
Development data. It is very hard to not overfit, since a small sample from the training data is likely
to be biased, while increasing Sample size leads to the model having lesser data to learn from. We do
not report the performance of the models without augmentation on the Validation and Test data due
to 1) Computational Costs to run the models on the entire dataset 2) Limited number of attempts at
submission. In this section we will describe the results for the various tasks.

3.2 Task 2

Validation Set Test Set
PP * *
PP+Aug, Dot Product 41.3 *
PP+Aug, Cos 75.3 75.0

Table 2: PP: Preprocessing, Aug: Data Augmentation, Dot: Dot Product, Cos: Cosine Similarity

As with the prior task, we augment the training set with the rotated and flipped images. With Dot
Product similarity we get a score of 41.3% on the Validation Set, this is vastly improved using Cosine
Similarity, and we get a score of 75.3% on the Test Set.

4 Task 3: Pattern Discovery & Exploration

The final task for the challenge consists of exploring the data, and performing some patter n analysis
for a given set of 300 images. We first directly use the image vectors and compute the k-NN and
the k-Means using cosine distance to find certain trivial patterns, however since these images have
multiple orientations, and different color gradients, these simple approaches completely fail.

We then move to use the activations of the dense layers and perform t-SNE [6], an unsupervised
dimensionality reduction technique, that projects our data to a lower dimensional (typically, 2 or 3)
such that the inter feature distance of the vectors is preserved. However, on manual inspection we
find that the given images are not as grainy as the images prvoided for Tasks 1 & 2. We therefore,
reduce the intensity at which denoising is performed to these images. We then use the first dense
layer activations as the feature vectors for our images, and proceed to perform t-SNE. It is observed
that the data has a tendency to separate into mostly 2 groups, this is predictable, since our model is
trained on a discriminatory binary classification task.

Figure 4: Results of 2-NN on a given Query Image, the noisy nature of this data, makes it hard to use
standard image vectors for any task.
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Figure 5: The figure on the left displays the tSNE representation of the feature vectors. On the right,
we have images that were close in tsNE space, and also found similar upon visual inspection.

Although, certain images close in tSNE space did indeed visually seem similar, however it is difficult
to make claims with certainty here. Without standard ground truth it is hard to say if the retrieved
images were truly close in the latent neural space or if the visual similarity was purely out of chance.
Confirmatory bias also cannot be ruled out.

5 Conclusion

In this paper we present approaches to predicting the orientation of a footprint, using a deep convolu-
tional neural network, and report a high score of 93.4% on the first classification task . We further use
standard linear algebra and model task 2, involving matching footprints, treating it as a information
retrieval problem and achieve a score of 75.0% on the test set. We finally perform some standard
clustering and dimensionality reduction techniques in order to extract underlying patterns from the
provided footprint images.
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