

Large Graph Mining: Power Tools and a Practitioner's guide

Christos Faloutsos
Gary Miller
Charalampos (Babis) Tsourakakis
CMU

Outline

- Introduction Motivation
- Task 1: Node importance
- Task 2: Community detection
- Task 3: Recommendations
- Task 4: Connection sub-graphs
- Task 5: Mining graphs over time
- Task 6: Virus/influence propagation
- Task 7: Spectral graph theory
- Task 8: Tera/peta graph mining: hadoop
- Observations patterns of real graphs
- Conclusions

Graphs - why should we care?

Internet Map
[lumeta.com]

Friendship Network [Moody '01]

Food Web [Martinez '91]

Protein Interactions [genomebiology.com]

Graphs - why should we care?

• IR: bi-partite graphs (doc-terms)

web: hyper-text graph

• ... and more:

Graphs - why should we care?

- network of companies & board-of-directors members
- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection
- •
- Any M:N relationship -> Graph
- Any subject-verb-object construct: -> Graph

Graphs and matrices

- Closely related
- Powerful tools from matrix algebra, for graph mining
- (and, conversely, great problems for CS/Math to solve)

Examples of Matrices: Graph - social network

Peter

Iohn

John Peter Mary Nick

JOIIII	1 0001	TVIAI y	TVICI	•••
0	11	22	55	
5	0	6	7	
		•••	•••	•••
•••				•••

Marv

Nick

• • •

Examples of Matrices:

Market basket

• market basket as in Association Rules

	milk	bread	choc.	wine	•••
John	13	11	22	55	
John Peter Mary Nick	5	4	6	7	
Mary					
N1CK					

KDD'09

Examples of Matrices:Documents and terms

mining classif.

Paper#1

data

Paper#2

Paper#3

Paper#4

...

				•••
13	11	22	55	
5	4	6	7	

tree

Examples of Matrices:Authors and terms

	data		mining	classif.	tree	•••
John		13	11	22	55	
John Peter Mary Nick		5	4	6	7	
Mary						
N ₁ ck						
		-				

KDD'09

Examples without networks

• (or, at least, no straightforward network interpretation)

Examples of Matrices: cloud of n-d points

chol#	blood#	age	••	•••
13	11	22	55	
5	4	6	7	

• • •

John

Peter

Mary

Nick

Examples of Matrices: sensor-ids and time-ticks

temp1	temp2	humid.	pressure	•••
13	11	22	55	
5	4	6	7	

Outline

• Introduction – Motivation

- Task 1: Node importance
- Task 2: Community detection
- •
- Conclusions