
CMU SCS 

Mining Billion-node Graphs:
 Patterns, Generators and

 Tools 
Christos Faloutsos 

CMU 



CMU SCS 

Thanks! 
•  Andy Yoo 

•  Tina Eliassi-Rad 

•  Brian Gallagher 

•  Keith Henderson 

•  Irene Massiat 

LLNL'10 C. Faloutsos (CMU) 2 



CMU SCS 

C. Faloutsos (CMU) 3 

Our goal: 

Open source system for mining huge graphs: 

PEGASUS project (PEta GrAph mining
 System)  

•  www.cs.cmu.edu/~pegasus 
•  code and papers 

LLNL'10 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability 
•  Conclusions 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

Protein Interactions 
[genomebiology.com] 

Friendship Network 
[Moody ’01] 

LLNL'10 
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Graphs - why should we care? 
•  IR: bi-partite graphs (doc-terms) 

•  web: hyper-text graph 

•  ... and more: 

D1 

DN 

T1 

TM 

... ... 
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Graphs - why should we care? 
•  network of companies & board-of-directors

 members 
•  ‘viral’ marketing 
•  web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic

 and anomaly detection 
•  .... 

LLNL'10 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs 
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  Problem#3: Scalability 
•  Conclusions 

LLNL'10 
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Problem #1 - network and graph
 mining 

•  How does the Internet look like? 
•  How does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

LLNL'10 
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Problem #1 - network and graph
 mining 

•  How does the Internet look like? 
•  How does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to
 discover patterns 
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Problem #1 - network and graph
 mining 

•  How does the Internet look like? 
•  How does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to
 discover patterns 

–  Large datasets reveal patterns/anomalies
 that may be invisible otherwise… 

LLNL'10 
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Graph mining 
•  Are real graphs random? 

LLNL'10 
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Laws and patterns 
•  Are real graphs random? 
•  A: NO!! 

– Diameter 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  So, let’s look at the data 

LLNL'10 
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Solution# S.1 
•  Power law in the degree distribution

 [SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

LLNL'10 
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Solution# S.2: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency
 matrix 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

LLNL'10 
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Solution# S.2: Eigen Exponent E 

•  [Mihail, Papadimitriou ’02]: slope is ½ of rank
 exponent 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

LLNL'10 
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But: 
How about graphs from other domains? 

LLNL'10 
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More power laws: 
•  web hit counts [w/ A. Montgomery] 

Web Site Traffic 

in-degree (log scale) 

Count 
(log scale) 

Zipf 

users 
sites 

``ebay’’ 

LLNL'10 
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epinions.com 
•  who-trusts-whom

 [Richardson +
 Domingos, KDD
 2001] 

(out) degree 

count 

trusts-2000-people user 

LLNL'10 
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And numerous more 
•  # of sexual contacts 
•  Income [Pareto] –’80-20 distribution’ 
•  Duration of downloads [Bestavros+] 
•  Duration of UNIX jobs (‘mice and

 elephants’) 
•  Size of files of a user 
•  … 
•  ‘Black swans’ 
LLNL'10 C. Faloutsos (CMU) 20 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  triangles 
•  cliques 

– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
LLNL'10 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles  

LLNL'10 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles 
–  Friends of friends are friends  

•  Any patterns? 

LLNL'10 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions X-axis: # of Triangles 
    a node participates in 
Y-axis: count of such nodes 

LLNL'10 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions X-axis: # of Triangles 
    a node participates in 
Y-axis: count of such nodes 
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Triangle Law: #S.4  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

LLNL'10 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 

details 

LLNL'10 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 
A: Yes! 

 #triangles = 1/6 Sum ( λi
3 ) 

      (and, because of skewness, we only need  
       the top few eigenvalues! 

details 

LLNL'10 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

1000x+ speed-up, >90% accuracy 

details 

LLNL'10 
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EigenSpokes 
B. Aditya Prakash, Mukund Seshadri, Ashwin

 Sridharan, Sridhar Machiraju and Christos
 Faloutsos: EigenSpokes: Surprising
 Patterns and Scalable Community
 Chipping in Large Graphs, PAKDD 2010,
 Hyderabad, India, 21-24 June 2010. 

C. Faloutsos (CMU) 30 LLNL'10 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors
 (symmetric, undirected graph) 

31 C. Faloutsos (CMU) LLNL'10 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors
 (symmetric, undirected graph) 

32 C. Faloutsos (CMU) LLNL'10 

N 

N 

details 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of

 scores of u1 vs u2 
•  One would expect 

– Many points @
 origin 

– A few scattered
 ~randomly 

C. Faloutsos (CMU) 33 

u1 

u2 

LLNL'10 

1st Principal  
component 

2nd Principal  
component 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of

 scores of u1 vs u2 
•  One would expect 

– Many points @
 origin 

– A few scattered
 ~randomly 
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u1 

u2 
90o 

LLNL'10 
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EigenSpokes - pervasiveness 
• Present in mobile social graph 

 across time and space 

• Patent citation graph 

35 C. Faloutsos (CMU) LLNL'10 
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EigenSpokes - explanation 

Near-cliques, or near
-bipartite-cores, loosely
 connected 

36 C. Faloutsos (CMU) LLNL'10 
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EigenSpokes - explanation 

Near-cliques, or near
-bipartite-cores, loosely
 connected 
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EigenSpokes - explanation 

Near-cliques, or near
-bipartite-cores, loosely
 connected 

38 C. Faloutsos (CMU) LLNL'10 
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EigenSpokes - explanation 

Near-cliques, or near
-bipartite-cores, loosely
 connected 

So what? 
 Extract nodes with high

 scores  
  high connectivity 
 Good “communities” 

spy plot of top 20 nodes 

39 C. Faloutsos (CMU) LLNL'10 
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Bipartite Communities! 

magnified bipartite community 

patents from 
same inventor(s) 

cut-and-paste 
bibliography! 

40 C. Faloutsos (CMU) LLNL'10 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  triangles 
•  cliques 

– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
LLNL'10 
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Observations on  weighted
 graphs? 

•  A: yes - even more ‘laws’! 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected
 Components: Patterns and a Generator.  
SIG-KDD 2008  

LLNL'10 
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Observation W.1: Fortification 
Q: How do the weights  
of nodes relate to degree? 

LLNL'10 
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Observation W.1: Fortification 

More donors,  
more $ ? 

$10 

$5 

LLNL'10 

‘Reagan’ 

‘Clinton’ 
$7 
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Edges (# donors) 

In-weights 
($) 

C. Faloutsos (CMU) 45 

Observation W.1: fortification: 
Snapshot Power Law 

•  Weight: super-linear on in-degree  
•  exponent ‘iw’: 1.01 < iw < 1.26 

Orgs-Candidates 

e.g. John Kerry,  
$10M received, 
from 1K donors 

More donors,  
even more $ 

$10 

$5 

LLNL'10 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  … 

LLNL'10 
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Problem: Time evolution 
•  with Jure Leskovec (CMU ->

 Stanford) 

•   and Jon Kleinberg (Cornell –
 sabb. @ CMU) 

LLNL'10 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints

 at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 

LLNL'10 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints

 at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 
•  Diameter shrinks over time 

LLNL'10 
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T.1 Diameter – “Patents” 

•  Patent citation
 network 

•  25 years of data 
•  @1999 

–  2.9 M nodes 
–  16.5 M edges 

time [years] 

diameter 

LLNL'10 
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T.2 Temporal Evolution of the
 Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 

LLNL'10 
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T.2 Temporal Evolution of the
 Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 
•  A: over-doubled! 

– But obeying the ``Densification Power Law’’ 
LLNL'10 
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T.2 Densification – Patent
 Citations 

•  Citations among
 patents granted 

•  @1999 
–  2.9 M nodes 
–  16.5 M edges 

•  Each year is a
 datapoint 

N(t) 

E(t) 

1.66 

LLNL'10 



CMU SCS 

C. Faloutsos (CMU) 54 

Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  … 

LLNL'10 
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More on Time-evolving graphs 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected
 Components: Patterns and a Generator.  
SIG-KDD 2008  

LLNL'10 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

LLNL'10 
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Observation T.3: NLCC behavior 
•  After the gelling point, the GCC takes off, but 

NLCC’s remain ~constant (actually, oscillate). 

IMDB 

CC size 

Time-stamp 
LLNL'10 
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Timing for Blogs 

•  with Mary McGlohon (CMU) 
•  Jure Leskovec (CMU->Stanford) 
•  Natalie Glance (now at Google) 
•  Mat Hurst (now at MSR) 
[SDM’07] 

LLNL'10 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 

lag: days after post 

# in links 

1 2 3 

@t 

@t + lag 

LLNL'10 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? 

# in links 
(log) 

1 2 3 days after post 
(log) 

LLNL'10 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? -1.6  
•  close to -1.5: Barabasi’s stack model 
•  and like the zero-crossings of a random walk 

# in links 
(log) 

1 2 3 

-1.6 

days after post 
(log) 

LLNL'10 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– CenterPiece Subgraphs; G-Ray 
– OddBall (anomaly detection) 
– PEGASUS 

•  Problem#3: Scalability 
•  Conclusions 

LLNL'10 
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CenterPiece Subgraphs 
•  Hanghang TONG et al,

 KDD’06 

C. Faloutsos (CMU) 63 LLNL'10 
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Center-Piece Subgraph Discovery 

[Tong+ KDD 06] 

Original Graph 

Q: Who is the most central node 
wrt the black nodes?  

(e.g., master-mind criminal, common 
advisor/collaborator, etc) 

Input 

B 

A 

C 

64 C. Faloutsos (CMU) LLNL'10 
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B 

A 

C B 

A 

C 

Center-Piece Subgraph Discovery 
[Tong+ KDD 06] 

Q: How to find hub for the query nodes? 

Input: original graph Output: CePS 

CePS Node 

C. Faloutsos (CMU) A: Combine proximity scores (RWR) LLNL'10 
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CePS: Example (AND Query) 

66 

?	
  

C. Faloutsos (CMU) LLNL'10 

DBLP co-authorship network:  
- 400,000 authors, 2,000,000 edges 

Code at: http://www.cs.cmu.edu/~htong/soft.htm 
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CePS: Example (AND Query) 

67 C. Faloutsos (CMU) 

DBLP co-authorship network:  
- 400,000 authors, 2,000,000 edges 

Code at: http://www.cs.cmu.edu/~htong/soft.htm 
LLNL'10 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– CenterPiece Subgraphs; G-Ray 
– OddBall (anomaly detection) 
– PEGASUS 

•  Problem#3: Scalability 
•  Conclusions 

LLNL'10 
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Graph X-Ray:   
Fast Best-Effort Pattern Matching  

in Large Attributed Graphs 

Hanghang Tong, Brian Gallagher,  
Christos Faloutsos, Tina Eliassi-Rad 

KDD’07 
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Output Input 

Attributed Data Graph 

Query Graph 

Matching Subgraph 

LLNL'10 
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Effectiveness: star-query  

Query  Result 
LLNL'10 C. Faloutsos (CMU) 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– CenterPiece Subgraphs 
– OddBall (anomaly detection) 

•  Problem#3: Scalability - PEGASUS 

•  Conclusions 

LLNL'10 
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OddBall: Spotting Anomalies 
in  Weighted Graphs 

Leman Akoglu, Mary McGlohon, Christos 
Faloutsos 

Carnegie Mellon University  
School of Computer Science 

To appear in PAKDD 2010, Hyderabad, India 
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Main idea 
For each node,  
•  extract ‘ego-net’ (=1-step-away neighbors) 
•  Extract features (#edges, total weight, etc

 etc) 
•  Compare with the rest of the population 

C. Faloutsos (CMU) 74 LLNL'10 
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What is an egonet? 

ego 

75 

egonet 

C. Faloutsos (CMU) LLNL'10 
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Selected Features 
  Ni: number of neighbors (degree) of ego i 
  Ei: number of edges in egonet i 
  Wi: total weight of egonet i 
  λw,i: principal eigenvalue of the weighted 

adjacency matrix of egonet I 

76 C. Faloutsos (CMU) LLNL'10 
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Near-Clique/Star 

77 LLNL'10 C. Faloutsos (CMU) 
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Near-Clique/Star 

78 C. Faloutsos (CMU) LLNL'10 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– CenterPiece Subgraphs 
– OddBall (anomaly detection) 

•  Problem#3: Scalability -PEGASUS 

•  Conclusions 

LLNL'10 
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Centralized Hadoop
/PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old DONE 

Conn. Comp old DONE 

Triangles DONE 
Visualization STARTED 

Outline – Algorithms & results 

LLNL'10 
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HADI for diameter estimation 
•  Radius Plots for Mining Tera-byte Scale

 Graphs U Kang, Charalampos
 Tsourakakis, Ana Paula Appel, Christos
 Faloutsos, Jure Leskovec, SDM’10 

•  Naively: diameter needs O(N**2) space and
 up to O(N**3) time – prohibitive (N~1B) 

•  Our HADI: linear on E (~10B) 
– Near-linear scalability wrt # machines 
– Several optimizations -> 5x faster 

C. Faloutsos (CMU) 81 LLNL'10 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 
?? 

19+? [Barabasi+] 

82 C. Faloutsos (CMU) 

Radius 

Count 

LLNL'10 



CMU SCS 

YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+? [Barabasi+] 

83 C. Faloutsos (CMU) 

Radius 

Count 

LLNL'10 

14 (dir.) 
~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

84 C. Faloutsos (CMU) LLNL'10 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

LLNL'10 
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Radius Plot of GCC of YahooWeb. 

86 C. Faloutsos (CMU) LLNL'10 
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Running time -  Kronecker and Erdos-Renyi  
Graphs with billions edges. 

details 
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Centralized Hadoop
/PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old DONE 

Conn. Comp old DONE 

Triangles DONE 
Visualization STARTED 

Outline – Algorithms & results 

LLNL'10 



CMU SCS 
Generalized Iterated Matrix

 Vector Multiplication (GIMV) 

C. Faloutsos (CMU) 89 

PEGASUS: A Peta-Scale Graph Mining  
System - Implementation and Observations.  
U Kang, Charalampos E. Tsourakakis,  
and Christos Faloutsos.  
(ICDM) 2009, Miami, Florida, USA.  
Best Application Paper (runner-up).  

LLNL'10 
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Generalized Iterated Matrix

 Vector Multiplication (GIMV) 

C. Faloutsos (CMU) 90 

•  PageRank 
•  proximity (RWR) 
•  Diameter 
•  Connected components 
•  (eigenvectors,  
•   Belief Prop.  
•   … ) 

Matrix – vector 
Multiplication 

(iterated) 

LLNL'10 

details 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) LLNL'10 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) LLNL'10 

~0.7B  
singleton 
 nodes 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) LLNL'10 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 
300-size 

cmpt 
X 500. 
Why? 1100-size cmpt 

X 65. 
Why? 

C. Faloutsos (CMU) LLNL'10 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

suspicious 
financial-advice sites 

(not existing now) 

C. Faloutsos (CMU) LLNL'10 
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GIM-V At Work 
•  Connected Components over Time 
•  LinkedIn: 7.5M nodes and 58M edges 

Stable tail slope 
after the gelling point 

C. Faloutsos (CMU) LLNL'10 
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Centralized Hadoop
/PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old DONE 

Conn. Comp old DONE 

Triangles DONE 
Visualization STARTED 

Outline – Algorithms & results 

LLNL'10 
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Triangles : Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 
A: Yes! 

 #triangles = 1/6 Sum ( λi
3 ) 

 (and, because of skewness, we only need  
 the top few eigenvalues! 

Mentioned already 

LLNL'10 
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Triangle Law: #1  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions X-axis: # of Triangles 
    a node participates in 

Y-axis: count of such nodes 

Mentioned already 

LLNL'10 
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Centralized Hadoop
/PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old DONE 

Conn. Comp old DONE 

Triangles DONE 
Visualization STARTED 

Outline – Algorithms & results 
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Visualization: ShiftR 
•  Supporting Ad Hoc Sensemaking:

 Integrating Cognitive, HCI, and Data
 Mining Approaches 
Aniket Kittur, Duen Horng (‘Polo’) Chau,
 Christos Faloutsos, Jason I. Hong 
Sensemaking Workshop at CHI 2009, April
 4-5. Boston, MA, USA. 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability 
•  (additional topics, skipped) 
•  Conclusions 

LLNL'10 



CMU SCS 

C. Faloutsos (CMU) 104 

Other topics - part#1 - tools 

•  Community detection – how many? 
– Cross-Associations [Chakrabarti +, KDD 2004] 

•  Time-evolving graphs 
– Tensors [Sun+, KDD’06],  
–  [Kolda+ ICDM’05] 
– GraphScope [Sun+, KDD’07] 

•  Graph compression 
– CUR decomposition [Sun+ SDM’07] 
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Tensors 

•  Adjacency matrices, stacked (over time, and/or
 edge-type – ‘composite networks’) 

LLNL'10 C. Faloutsos (CMU) 
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Tensors 

•  Adjacency matrices, stacked (over time, and/or
 edge-type – ‘composite networks’) 

keyword 

1991 
1992 

1990 

Author 
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Tensors 

•  Adjacency matrices, stacked (over time, and/or
 edge-type – ‘composite networks’) 

~ + 

PARAFAC tensor decomposition 
(generalization of SVD) 

LLNL'10 C. Faloutsos (CMU) 
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Other topics – part#2 - generators 

•  Kronecker [PKDD’05]; 
•  Random Typing [Akoglu+, PKDD’09] 

LLNL'10 
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Kronecker Product – a Graph 
•  One of most realistic generators, with provable

 properties 
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Other topics - part#3 – virus
 propagation 

•  Epidemic threshold for SIS: depends only
 on first eigenvalue of adjacency matrix 

•  [Chakrabarti+, TISSEC’07] 
•  Immunization policies [Tong+, under

 review] 
•  Drinking water sensor placement [KDD’07]  
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More info 
Tutorial on graph mining: KDD’09   
(w/ Gary Miller and C. Tsourakakis) 
www.cs.cmu.edu/~christos/TALKS/09-KDD-tutorial/ 

Tutorial on tensors: SIGMOD’07  
(w/ T. Kolda and J. Sun): 
www.cs.cmu.edu/~christos/TALKS/SIGMOD-07-tutorial/ 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability 
•  (additional topics, skipped) 
•  Conclusions 
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OVERALL CONCLUSIONS –
 low level: 

•  Several new patterns (fortification,
 triangle-laws, conn. components, etc) 

•  New tools: 
– CenterPiece Subgraphs, G-Ray, anomaly

 detection (OddBall), EigenSpokes 

•  Scalability: PEGASUS / hadoop 
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OVERALL CONCLUSIONS –
 high level 

•  Large datasets may reveal patterns/outliers
 that would be invisible otherwise 

•  Terrific opportunities 
– Large datasets, easily(*) available PLUS 

–  s/w and h/w developments 

•  Promising collaborations between DB/Sys,
 AI/Stat, sociology, marketing,
 epidemiology, ++ 
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