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Thanks! 

•  Chris Olston 
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Our goal: 

Open source system for mining huge graphs: 

PEGASUS project (PEta GrAph mining 
System)  

•  www.cs.cmu.edu/~pegasus 
•  code and papers 

Hadoop Summit '10 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability 
•  Conclusions 

Hadoop Summit '10 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

Protein Interactions 
[genomebiology.com] 

Friendship Network 
[Moody ’01] 

Hadoop Summit '10 
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Graphs - why should we care? 
•  IR: bi-partite graphs (doc-terms) 

•  web: hyper-text graph 

•  ... and more: 

D1 

DN 

T1 

TM 

... ... 

Hadoop Summit '10 



CMU SCS 

C. Faloutsos (CMU) 7 

Graphs - why should we care? 
•  network of companies & board-of-directors 

members 
•  ‘viral’ marketing 
•  web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic 

and anomaly detection 
•  .... 

Hadoop Summit '10 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs 
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  Problem#3: Scalability 
•  Conclusions 

Hadoop Summit '10 
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Problem #1 - network and graph 
mining 

•  How does the Internet look like? 
•  How does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

Hadoop Summit '10 
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Problem #1 - network and graph 
mining 

•  How does the Internet look like? 
•  How does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 
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Problem #1 - network and graph 
mining 

•  How does the Internet look like? 
•  How does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

–  Large datasets reveal patterns/anomalies 
that may be invisible otherwise… 

Hadoop Summit '10 
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Graph mining 
•  Are real graphs random? 

Hadoop Summit '10 



CMU SCS 

C. Faloutsos (CMU) 13 

Laws and patterns 
•  Are real graphs random? 
•  A: NO!! 

– Diameter 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  So, let’s look at the data 

Hadoop Summit '10 
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Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

Hadoop Summit '10 
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Solution# S.2: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency 
matrix 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

Hadoop Summit '10 
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Solution# S.2: Eigen Exponent E 

•  [Mihail, Papadimitriou ’02]: slope is ½ of rank 
exponent 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

Hadoop Summit '10 
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But: 
How about graphs from other domains? 

Hadoop Summit '10 
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More power laws: 
•  web hit counts [w/ A. Montgomery] 

Web Site Traffic 

in-degree (log scale) 

Count 
(log scale) 

Zipf 

users 
sites 

``ebay’’ 

Hadoop Summit '10 
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epinions.com 
•  who-trusts-whom 

[Richardson + 
Domingos, KDD 
2001] 

(out) degree 

count 

trusts-2000-people user 

Hadoop Summit '10 
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And numerous more 
•  # of sexual contacts 
•  Income [Pareto] –’80-20 distribution’ 
•  Duration of downloads [Bestavros+] 
•  Duration of UNIX jobs (‘mice and 

elephants’) 
•  Size of files of a user 
•  … 
•  ‘Black swans’ 
Hadoop Summit '10 C. Faloutsos (CMU) 20 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  triangles 
•  cliques 

– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
Hadoop Summit '10 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles  

Hadoop Summit '10 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles 
–  Friends of friends are friends  

•  Any patterns? 

Hadoop Summit '10 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions X-axis: # of Triangles 
    a node participates in 
Y-axis: count of such nodes 

Hadoop Summit '10 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions X-axis: # of Triangles 
    a node participates in 
Y-axis: count of such nodes 
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Triangle Law: #S.4  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

Hadoop Summit '10 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 

details 

Hadoop Summit '10 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 
A: Yes! 

 #triangles = 1/6 Sum ( λi
3 ) 

      (and, because of skewness, we only need  
       the top few eigenvalues! 

details 

Hadoop Summit '10 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

1000x+ speed-up, >90% accuracy 

details 

Hadoop Summit '10 
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EigenSpokes 
B. Aditya Prakash, Mukund Seshadri, Ashwin 

Sridharan, Sridhar Machiraju and Christos 
Faloutsos: EigenSpokes: Surprising 
Patterns and Scalable Community Chipping 
in Large Graphs, PAKDD 2010, 
Hyderabad, India, 21-24 June 2010. 

C. Faloutsos (CMU) 30 Hadoop Summit '10 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

31 C. Faloutsos (CMU) Hadoop Summit '10 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

32 C. Faloutsos (CMU) Hadoop Summit '10 

N 

N 

details 



CMU SCS 

EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 

C. Faloutsos (CMU) 33 

u1 

u2 

Hadoop Summit '10 

1st Principal  
component 

2nd Principal  
component 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 
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u1 

u2 
90o 

Hadoop Summit '10 
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EigenSpokes - pervasiveness 
• Present in mobile social graph 

 across time and space 

• Patent citation graph 

35 C. Faloutsos (CMU) Hadoop Summit '10 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

36 C. Faloutsos (CMU) Hadoop Summit '10 



CMU SCS 

EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

So what? 
 Extract nodes with high 

scores  
  high connectivity 
 Good “communities” 

spy plot of top 20 nodes 

39 C. Faloutsos (CMU) Hadoop Summit '10 
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Bipartite Communities! 

magnified bipartite community 

patents from 
same inventor(s) 

cut-and-paste 
bibliography! 

40 C. Faloutsos (CMU) Hadoop Summit '10 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  triangles 
•  cliques 

– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
Hadoop Summit '10 
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Observations on  weighted 
graphs? 

•  A: yes - even more ‘laws’! 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  

Hadoop Summit '10 
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Observation W.1: Fortification 
Q: How do the weights  
of nodes relate to degree? 

Hadoop Summit '10 
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Observation W.1: Fortification 

More donors,  
more $ ? 

$10 

$5 

Hadoop Summit '10 

‘Reagan’ 

‘Clinton’ 
$7 
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Edges (# donors) 

In-weights 
($) 

C. Faloutsos (CMU) 45 

Observation W.1: fortification: 
Snapshot Power Law 

•  Weight: super-linear on in-degree  
•  exponent ‘iw’: 1.01 < iw < 1.26 

Orgs-Candidates 

e.g. John Kerry,  
$10M received, 
from 1K donors 

More donors,  
even more $ 

$10 

$5 

Hadoop Summit '10 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  … 

Hadoop Summit '10 
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Problem: Time evolution 
•  with Jure Leskovec (CMU -> 

Stanford) 

•   and Jon Kleinberg (Cornell – 
sabb. @ CMU) 

Hadoop Summit '10 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 

Hadoop Summit '10 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 
•  Diameter shrinks over time 

Hadoop Summit '10 
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T.1 Diameter – “Patents” 

•  Patent citation 
network 

•  25 years of data 
•  @1999 

–  2.9 M nodes 
–  16.5 M edges 

time [years] 

diameter 

Hadoop Summit '10 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 

Hadoop Summit '10 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 
•  A: over-doubled! 

– But obeying the ``Densification Power Law’’ 
Hadoop Summit '10 
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T.2 Densification – Patent 
Citations 

•  Citations among 
patents granted 

•  @1999 
–  2.9 M nodes 
–  16.5 M edges 

•  Each year is a 
datapoint 

N(t) 

E(t) 

1.66 

Hadoop Summit '10 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– CenterPiece Subgraphs 
– OddBall (anomaly detection) 
•  Problem#3: Scalability -PEGASUS 

•  Conclusions 

Hadoop Summit '10 
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Centralized Hadoop/
PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old DONE 

Conn. Comp old DONE 

Triangles DONE 
Visualization STARTED 

Outline – Algorithms & results 

Hadoop Summit '10 
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HADI for diameter estimation 
•  Radius Plots for Mining Tera-byte Scale 

Graphs U Kang, Charalampos Tsourakakis, 
Ana Paula Appel, Christos Faloutsos, Jure 
Leskovec, SDM’10 

•  Naively: diameter needs O(N**2) space and 
up to O(N**3) time – prohibitive (N~1B) 

•  Our HADI: linear on E (~10B) 
– Near-linear scalability wrt # machines 
– Several optimizations -> 5x faster 

C. Faloutsos (CMU) 56 Hadoop Summit '10 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 
?? 

19+? [Barabasi+]  
(‘99, O(106) nodes) 

57 C. Faloutsos (CMU) 

Radius 

Count 

Hadoop Summit '10 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

58 C. Faloutsos (CMU) 

Radius 

Count 

Hadoop Summit '10 

14 (dir.) 
~7 (undir.) 

19+? [Barabasi+]  
(‘99, O(106) nodes) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 

59 C. Faloutsos (CMU) Hadoop Summit '10 

Shape? 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

60 C. Faloutsos (CMU) Hadoop Summit '10 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

Hadoop Summit '10 
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Radius Plot of GCC of YahooWeb. 

62 C. Faloutsos (CMU) Hadoop Summit '10 
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Running time -  Kronecker and Erdos-Renyi  
Graphs with billions edges. 

details 
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Centralized Hadoop/
PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old DONE 

Conn. Comp old DONE 

Triangles DONE 
Visualization STARTED 

Outline – Algorithms & results 

Hadoop Summit '10 
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Generalized Iterated Matrix 

Vector Multiplication (GIMV) 

C. Faloutsos (CMU) 65 

PEGASUS: A Peta-Scale Graph Mining  
System - Implementation and Observations.  
U Kang, Charalampos E. Tsourakakis,  
and Christos Faloutsos.  
(ICDM) 2009, Miami, Florida, USA.  
Best Application Paper (runner-up).  

Hadoop Summit '10 
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Generalized Iterated Matrix 

Vector Multiplication (GIMV) 

C. Faloutsos (CMU) 66 

•  PageRank 
•  proximity (RWR) 
•  Diameter 
•  Connected components 
•  (eigenvectors,  
•   Belief Prop.  
•   … ) 

Matrix – vector 
Multiplication 

(iterated) 

Hadoop Summit '10 

details 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) Hadoop Summit '10 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) Hadoop Summit '10 

~0.7B  
singleton 
 nodes 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) Hadoop Summit '10 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 
300-size 

cmpt 
X 500. 
Why? 1100-size cmpt 

X 65. 
Why? 

C. Faloutsos (CMU) Hadoop Summit '10 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

suspicious 
financial-advice sites 

(not existing now) 

C. Faloutsos (CMU) Hadoop Summit '10 
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GIM-V At Work 
•  Connected Components over Time 
•  LinkedIn: 7.5M nodes and 58M edges 

Stable tail slope 
after the gelling point 

C. Faloutsos (CMU) Hadoop Summit '10 
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OVERALL CONCLUSIONS – 
low level: 

•  Several new patterns (fortification, 
triangle-laws, conn. components, etc) 

•  New tools: 
– CenterPiece Subgraphs, G-Ray, anomaly 

detection (OddBall), EigenSpokes 

•  Scalability: PEGASUS / hadoop 

Hadoop Summit '10 
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OVERALL CONCLUSIONS – 
high level 

•  Large datasets may reveal patterns/outliers 
that would be invisible otherwise 

•  Terrific opportunities 
– Large datasets, easily(*) available PLUS 

–  s/w and h/w developments 

•  Promising collaborations between DB/Sys, 
AI/Stat, sociology, marketing, 
epidemiology, ++ 

Hadoop Summit '10 
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