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Our goal: 

Open source system for mining huge graphs: 

PEGASUS project (PEta GrAph mining 
System)  

•  www.cs.cmu.edu/~pegasus 
•  code and papers 

SFU'11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability 
•  Conclusions 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

Friendship Network 
[Moody ’01] 

SFU'11 



CMU SCS 

C. Faloutsos (CMU) 6 

Graphs - why should we care? 
•  IR: bi-partite graphs (doc-terms) 

•  web: hyper-text graph 

•  ... and more: 

D1 

DN 

T1 

TM 

... ... 
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Graphs - why should we care? 
•  ‘viral’ marketing 
•  web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic 

and anomaly detection 
•  .... 

SFU'11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs 
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  Problem#3: Scalability 
•  Conclusions 

SFU'11 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

SFU'11 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

–  Large datasets reveal patterns/anomalies 
that may be invisible otherwise… 

SFU'11 
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Graph mining 
•  Are real graphs random? 

SFU'11 
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Laws and patterns 
•  Are real graphs random? 
•  A: NO!! 

– Diameter 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  So, let’s look at the data 

SFU'11 
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Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

internet domains 

att.com 

ibm.com 
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Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 
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Solution# S.2: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency 
matrix 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

SFU'11 
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Solution# S.2: Eigen Exponent E 

•  [Mihail, Papadimitriou ’02]: slope is ½ of rank 
exponent 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

SFU'11 
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But: 
How about graphs from other domains? 

SFU'11 
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More power laws: 
•  web hit counts [w/ A. Montgomery] 

Web Site Traffic 

in-degree (log scale) 

Count 
(log scale) 

Zipf 

users 
sites 

``ebay’’ 

SFU'11 
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epinions.com 
•  who-trusts-whom 

[Richardson + 
Domingos, KDD 
2001] 

(out) degree 

count 

trusts-2000-people user 

SFU'11 
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And numerous more 
•  # of sexual contacts 
•  Income [Pareto] –’80-20 distribution’ 
•  Duration of downloads [Bestavros+] 
•  Duration of UNIX jobs (‘mice and 

elephants’) 
•  Size of files of a user 
•  … 
•  ‘Black swans’ 
SFU'11 C. Faloutsos (CMU) 21 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  triangles 
•  cliques 

– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
SFU'11 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles  

SFU'11 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles 
–  Friends of friends are friends  

•  Any patterns? 

SFU'11 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions X-axis: # of  participating 
triangles 
Y: count (~ pdf) 

SFU'11 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions 

SFU'11 

X-axis: # of  participating 
triangles 
Y: count (~ pdf) 
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Triangle Law: #S.4  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

SFU'11 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 

details 

SFU'11 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 
A: Yes! 

 #triangles = 1/6 Sum ( λi
3 ) 

      (and, because of skewness (S2) ,  
 we only need the top few eigenvalues! 

details 

SFU'11 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

1000x+ speed-up, >90% accuracy 

details 

SFU'11 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

31 SFU'11 31 C. Faloutsos (CMU) 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

32 SFU'11 32 C. Faloutsos (CMU) 
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EigenSpokes 
B. Aditya Prakash, Mukund Seshadri, Ashwin 

Sridharan, Sridhar Machiraju and Christos 
Faloutsos: EigenSpokes: Surprising 
Patterns and Scalable Community Chipping 
in Large Graphs, PAKDD 2010, 
Hyderabad, India, 21-24 June 2010. 

C. Faloutsos (CMU) 33 SFU'11 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

34 C. Faloutsos (CMU) SFU'11 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

35 C. Faloutsos (CMU) SFU'11 

N 

N 

details 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

38 C. Faloutsos (CMU) SFU'11 

N 

N 

details 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 

C. Faloutsos (CMU) 39 

u1 

u2 

SFU'11 

1st Principal  
component 

2nd Principal  
component 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 
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u1 

u2 
90o 
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EigenSpokes - pervasiveness 
• Present in mobile social graph 

 across time and space 

• Patent citation graph 

41 C. Faloutsos (CMU) SFU'11 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

42 C. Faloutsos (CMU) SFU'11 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

So what? 
 Extract nodes with high 

scores  
  high connectivity 
 Good “communities” 

spy plot of top 20 nodes 

45 C. Faloutsos (CMU) SFU'11 
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Bipartite Communities! 

magnified bipartite community 

patents from 
same inventor(s) 

`cut-and-paste’ 
bibliography! 

46 C. Faloutsos (CMU) SFU'11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  triangles 
•  cliques 

– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
SFU'11 
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Observations on  weighted 
graphs? 

•  A: yes - even more ‘laws’! 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  

SFU'11 
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Observation W.1: Fortification 
Q: How do the weights  
of nodes relate to degree? 

SFU'11 
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Observation W.1: Fortification 

More donors,  
more $ ? 

$10 

$5 

SFU'11 

‘Reagan’ 

‘Clinton’ 
$7 
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Edges (# donors) 

In-weights 
($) 

C. Faloutsos (CMU) 51 

Observation W.1: fortification: 
Snapshot Power Law 

•  Weight: super-linear on in-degree  
•  exponent ‘iw’: 1.01 < iw < 1.26 

Orgs-Candidates 

e.g. John Kerry,  
$10M received, 
from 1K donors 

More donors,  
even more $ 

$10 

$5 

SFU'11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  … 

SFU'11 
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Problem: Time evolution 
•  with Jure Leskovec (CMU -> 

Stanford) 

•   and Jon Kleinberg (Cornell – 
sabb. @ CMU) 

SFU'11 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 

SFU'11 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 
•  Diameter shrinks over time 

SFU'11 
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T.1 Diameter – “Patents” 

•  Patent citation 
network 

•  25 years of data 
•  @1999 

–  2.9 M nodes 
–  16.5 M edges 

time [years] 

diameter 

SFU'11 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 

SFU'11 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 
•  A: over-doubled! 

– But obeying the ``Densification Power Law’’ 
SFU'11 
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T.2 Densification – Patent 
Citations 

•  Citations among 
patents granted 

•  @1999 
–  2.9 M nodes 
–  16.5 M edges 

•  Each year is a 
datapoint 

N(t) 

E(t) 

1.66 

SFU'11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  … 

SFU'11 
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More on Time-evolving graphs 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  

SFU'11 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

SFU'11 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

SFU'11 
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Observation T.3: NLCC behavior 
•  After the gelling point, the GCC takes off, but 

NLCC’s remain ~constant (actually, oscillate). 

IMDB 

CC size 

Time-stamp 
SFU'11 
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Timing for Blogs 

•  with Mary McGlohon (CMU->Google) 
•  Jure Leskovec (CMU->Stanford) 
•  Natalie Glance (now at Google) 
•  Mat Hurst (now at MSR) 
[SDM’07] 

SFU'11 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 

lag: days after post 

# in links 

1 2 3 

@t 

@t + lag 

SFU'11 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? 

# in links 
(log) 

days after post 
(log) 

SFU'11 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? -1.6  
•  close to -1.5: Barabasi’s stack model 
•  and like the zero-crossings of a random walk 

# in links 
(log) -1.6 

days after post 
(log) 

SFU'11 



CMU SCS 

SFU'11 C. Faloutsos (CMU) 70 

-1.5 slope 
J. G. Oliveira & A.-L. Barabási Human Dynamics: The 

Correspondence Patterns of Darwin and Einstein. 
Nature 437, 1251 (2005) . [PDF]  
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T.5: duration of phonecalls 
Surprising Patterns for the Call 

Duration Distribution of Mobile 
Phone Users 

Pedro O. S. Vaz de Melo, Leman 
Akoglu, Christos Faloutsos, Antonio 
A. F. Loureiro 

PKDD 2010 
SFU'11 C. Faloutsos (CMU) 71 
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Probably, power law (?) 

SFU'11 C. Faloutsos (CMU) 72 

?? 
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No Power Law! 

SFU'11 C. Faloutsos (CMU) 73 
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‘TLaC: Lazy Contractor’ 
•  The longer a task (phonecall) has taken, 
•  The even longer it will take 

SFU'11 C. Faloutsos (CMU) 74 

Odds ratio= 

Casualties(<x): 
Survivors(>=x) 

== power law 
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Data Description 

  Data from a private mobile operator of a large 
city 
  4 months of data 
  3.1 million users 
  more than 1 billion phone records 

  Over 96% of ‘talkative’ users obeyed a TLAC 
distribution (‘talkative’: >30 calls) 

SFU'11 C. Faloutsos (CMU) 
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Outliers: 

SFU'11 C. Faloutsos (CMU) 76 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– OddBall (anomaly detection) 
– Belief Propagation 
–  Immunization 

•  Problem#3: Scalability 
•  Conclusions 

SFU'11 
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OddBall: Spotting Anomalies 
in  Weighted Graphs 

Leman Akoglu, Mary McGlohon, Christos 
Faloutsos 

Carnegie Mellon University  
School of Computer Science 

PAKDD 2010, Hyderabad, India 
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Main idea 
For each node,  
•  extract ‘ego-net’ (=1-step-away neighbors) 
•  Extract features (#edges, total weight, etc 

etc) 
•  Compare with the rest of the population 

C. Faloutsos (CMU) 79 SFU'11 
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What is an egonet? 

ego 

80 

egonet 

C. Faloutsos (CMU) SFU'11 
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Selected Features 
  Ni: number of neighbors (degree) of ego i 
  Ei: number of edges in egonet i 
  Wi: total weight of egonet i 
  λw,i: principal eigenvalue of the weighted 

adjacency matrix of egonet I 

81 C. Faloutsos (CMU) SFU'11 
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Near-Clique/Star 

82 SFU'11 C. Faloutsos (CMU) 
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Near-Clique/Star 
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Near-Clique/Star 
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Andrew Lewis  
(director) 

Near-Clique/Star 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– OddBall (anomaly detection) 
– Belief Propagation 
–  Immunization 

•  Problem#3: Scalability 
•  Conclusions 

SFU'11 
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E-bay Fraud detection 

w/ Polo Chau & 
Shashank Pandit, CMU 
[www’07] 
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E-bay Fraud detection 
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E-bay Fraud detection 
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E-bay Fraud detection - NetProbe 
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Popular press 

And less desirable attention: 
•  E-mail from ‘Belgium police’ (‘copy of 

your code?’) 
SFU'11 C. Faloutsos (CMU) 91 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– OddBall (anomaly detection) 
– Belief propagation 
–  Immunization 

•  Problem#3: Scalability -PEGASUS 
•  Conclusions 

SFU'11 
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Immunization and epidemic 

thresholds 
•  Q1: which nodes to immunize? 
•  Q2: will a virus vanish, or will it create an 

epidemic? 

SFU'11 C. Faloutsos (CMU) 93 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 

SFU'11 94 C. Faloutsos (CMU) 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 

SFU'11 96 C. Faloutsos (CMU) 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 

 A: immunize the ones that 
     maximally raise 
     the `epidemic threshold’ 
     [Tong+, ICDM’10]     

SFU'11 97 C. Faloutsos (CMU) 
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Q2: will a virus take over? 
•  Flu-like virus (no immunity, ‘SIS’) 
•  Mumps (life-time immunity, ‘SIR’) 
•  Pertussis (finite-length immunity, ‘SIRS’) 

SFU'11 C. Faloutsos (CMU) 98 

β: attack prob 
δ: heal prob 
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Q2: will a virus take over? 
•  Flu-like virus (no immunity, ‘SIS’) 
•  Mumps (life-time immunity, ‘SIR’) 
•  Pertussis (finite-length immunity, ‘SIRS’) 

SFU'11 C. Faloutsos (CMU) 99 

β: attack prob 
δ: heal prob 

Α: depends on connectivity 
    (avg degree? Max degree?  
     variance?  Something else? 
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Epidemic threshold τ	


What should τ depend on? 
•  avg. degree? and/or highest degree?  
•  and/or variance of degree? 
•  and/or third moment of degree? 
•  and/or diameter? 
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Epidemic threshold 

•  [Theorem] We have no epidemic, if  

β/δ <τ = 1/ λ1,A 
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Epidemic threshold 

•  [Theorem] We have no epidemic, if  

β/δ <τ = 1/ λ1,A 

largest eigenvalue 
of adj. matrix A 

attack prob. 

recovery prob. 
epidemic threshold 

Proof: [Wang+03]  (for SIS=flu only) 
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A2: will a virus take over? 
•  For all typical virus propagation models (flu, 

mumps, pertussis, HIV, etc) 
•  The only connectivity measure that matters, is 

      1/λ1  
the first eigenvalue of the 
 adj. matrix 
[Prakash+, ‘10, arxiv] 

SFU'11 C. Faloutsos (CMU) 103 
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Thresholds for some models 

•  s = effective strength 
•  s < 1 : below threshold 

Models Effective Strength 
(s) 

Threshold (tipping 
point) 

SIS, SIR, SIRS, 
SEIR s = λ .    

                s = 1  
SIV, SEIV s = λ .    

                   (H.I.V.) s = λ .    
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A2: will a virus take over? 

SFU'11 C. Faloutsos (CMU) 105 

Fraction of 
infected 

Time ticks 

Below: exp. extinction 

Above: take-over 

Graph: 
Portland, OR 
31M links 
1.5M nodes 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 

 A: immunize the ones that 
     maximally raise 
     the `epidemic threshold’ 
     [Tong+, ICDM’10]     
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 

 A: immunize the ones that 
     maximally raise 
     the `epidemic threshold’ 
     [Tong+, ICDM’10]     
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Max eigen-drop Δλ	

for any virus! 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– OddBall (anomaly detection) 
– Belief propagation 
–  Immunization 

•  Problem#3: Scalability -PEGASUS 
•  Conclusions 

SFU'11 
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Scalability 
•   Google: > 450,000 processors in clusters of ~2000 

processors each [Barroso, Dean, Hölzle, “Web Search for 
a Planet: The Google Cluster Architecture” IEEE Micro 
2003] 

•  Yahoo: 5Pb of data [Fayyad, KDD’07] 
•  Problem: machine failures, on a daily basis 
•  How to parallelize data mining tasks, then? 
•  A: map/reduce – hadoop (open-source clone)  

http://hadoop.apache.org/ 
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Centralized Hadoop/
PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old HERE 

Conn. Comp old HERE 

Triangles done HERE 

Visualization started 

Outline – Algorithms & results 

SFU'11 
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HADI for diameter estimation 
•  Radius Plots for Mining Tera-byte Scale 

Graphs U Kang, Charalampos Tsourakakis, 
Ana Paula Appel, Christos Faloutsos, Jure 
Leskovec, SDM’10 

•  Naively: diameter needs O(N**2) space and 
up to O(N**3) time – prohibitive (N~1B) 

•  Our HADI: linear on E (~10B) 
– Near-linear scalability wrt # machines 
– Several optimizations -> 5x faster 

C. Faloutsos (CMU) 111 SFU'11 
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???? 

19+ [Barabasi+] 

112 C. Faloutsos (CMU) 

Radius 

Count 

SFU'11 

~1999, ~1M nodes 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+ [Barabasi+] 

113 C. Faloutsos (CMU) 

Radius 

Count 

SFU'11 

?? 

~1999, ~1M nodes 



CMU SCS 

YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+? [Barabasi+] 

114 C. Faloutsos (CMU) 

Radius 

Count 

SFU'11 

14 (dir.) 
~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
• 7 degrees of separation (!) 
• Diameter: shrunk 

???? 

19+? [Barabasi+] 

115 C. Faloutsos (CMU) 

Radius 

Count 

SFU'11 

14 (dir.) 
~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
Q: Shape? 

???? 
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Radius 

Count 

SFU'11 

~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality (?!) 

SFU'11 
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Radius Plot of GCC of YahooWeb. 

118 C. Faloutsos (CMU) SFU'11 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

SFU'11 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

SFU'11 

EN 

~7 

Conjecture: 
DE 

BR 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

SFU'11 

~7 

Conjecture: 
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Running time -  Kronecker and Erdos-Renyi  
Graphs with billions edges. 

details 
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Centralized Hadoop/
PEGASUS 

Degree Distr. old old 

Pagerank old old 

Diameter/ANF old HERE 

Conn. Comp old HERE 

Triangles HERE 

Visualization started 

Outline – Algorithms & results 

SFU'11 
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Generalized Iterated Matrix 

Vector Multiplication (GIMV) 

C. Faloutsos (CMU) 124 

PEGASUS: A Peta-Scale Graph Mining  
System - Implementation and Observations.  
U Kang, Charalampos E. Tsourakakis,  
and Christos Faloutsos.  
(ICDM) 2009, Miami, Florida, USA.  
Best Application Paper (runner-up).  

SFU'11 
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Generalized Iterated Matrix 

Vector Multiplication (GIMV) 

C. Faloutsos (CMU) 125 

•  PageRank 
•  proximity (RWR) 
•  Diameter 
•  Connected components 
•  (eigenvectors,  
•   Belief Prop.  
•   … ) 

Matrix – vector 
Multiplication 

(iterated) 

SFU'11 

details 
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Example: GIM-V At Work 
•  Connected Components – 4 observations: 

Size 

Count 

C. Faloutsos (CMU) SFU'11 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) SFU'11 

1) 10K x  
larger 
than next 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) SFU'11 

2) ~0.7B  
singleton 
 nodes 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) SFU'11 

3) SLOPE! 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 
300-size 

cmpt 
X 500. 
Why? 1100-size cmpt 

X 65. 
Why? 

C. Faloutsos (CMU) SFU'11 

4) Spikes! 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

suspicious 
financial-advice sites 

(not existing now) 

C. Faloutsos (CMU) SFU'11 
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GIM-V At Work 
•  Connected Components over Time 
•  LinkedIn: 7.5M nodes and 58M edges 

Stable tail slope 
after the gelling point 

C. Faloutsos (CMU) SFU'11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability 
•  Conclusions 

SFU'11 
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OVERALL CONCLUSIONS – 
low level: 

•  Several new patterns (fortification, 
triangle-laws, conn. components, etc) 

•  New tools: 
–  anomaly detection (OddBall), belief 

propagation, immunization 

•  Scalability: PEGASUS / hadoop 

SFU'11 
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OVERALL CONCLUSIONS – 
high level 

•  BIG DATA: Large datasets reveal patterns/
outliers that are invisible otherwise 

SFU'11 
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