Mining Billion-Node Graphs: Patterns and influence propagation

Christos Faloutsos CMU

Thank you!

- Sinan Aral
- Foster Provost
- Arun Sundararajan

• Shirley Lau

Our goal:

Open source system for mining huge graphs:

PEGASUS project (PEta GrAph mining System)

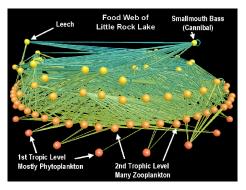
• www.cs.cmu.edu/~pegasus

• code and papers

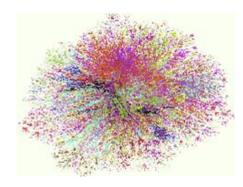
Outline

- Introduction Motivation
 - Problem#1: Patterns in graphs
 - Problem#2: Tools
 - Conclusions

Graphs - why should we care?



Food Web [Martinez '91]



Internet Map [lumeta.com]

Recommendation

systems

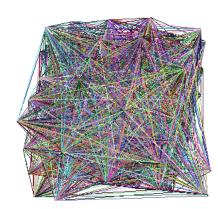
WIN'11

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
 - overview
 - Triangles
 - Diameter
 - `Eigenspokes'
 - Phonecall duration
 - Problem#2: Tools
 - Conclusions

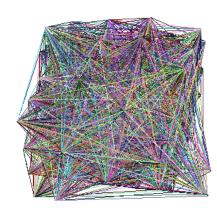
WIN'11

Problem #1 - network and graph mining

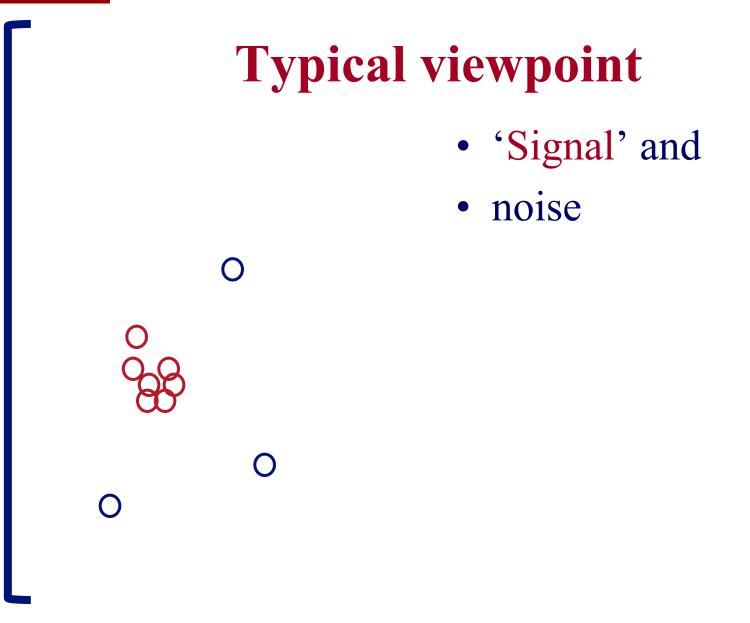


- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?

Problem #1 - network and graph mining



- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?
 - BIG DATA helps: finds patterns that would be 'invisible'



WIN'11

MORE REALISTIC viewpoint

- 'Signal' and
- Weaker signal

 \bigcap

 \cap

 \bigcirc

MORE REALISTIC viewpoint

- 'Signal' and
- Weaker signal and
- Even weaker signal

•

BIG DATA helps

00

MORE REALISTIC viewpoint

- 'Signal' and
- Weaker signal and
- Even weaker signal

•

BIG DATA helps (and sampling may hurt)

C. Faloutsos (CMU)

00

Graph mining

• Are real graphs random?

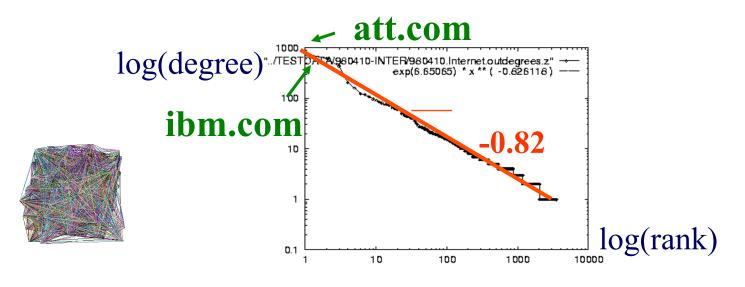
Laws and patterns

- Are real graphs random?
- A: NO!!
 - Diameter (small, and decreasing!)
 - in- and out- degree distributions (skewed/PL)
 - # triangles (skewed)
 - other (surprising) patterns
- So, let's look at the data

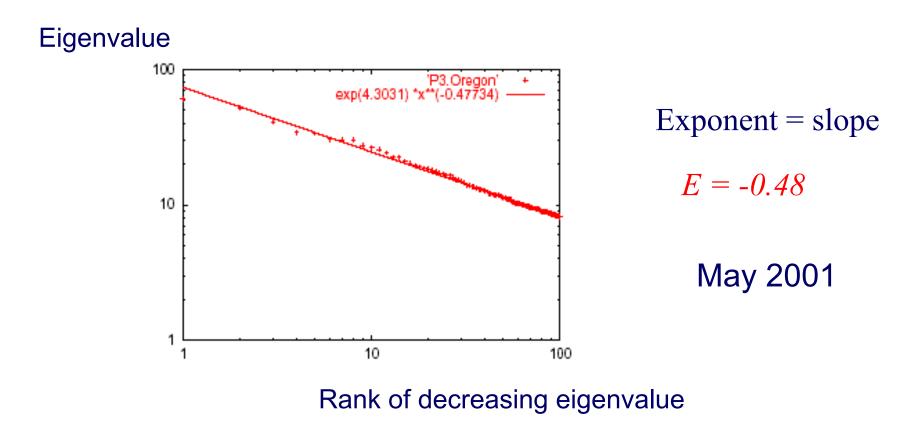
Solution# S.1

• Power law in the degree distribution [SIGCOMM99]

internet domains



Solution# S.2: Eigen Exponent E



• A2: power law in the eigenvalues of the adjacency matrix

WIN'11

C. Faloutsos (CMU)

16

Real Graph Patterns

	unweighted	weighted
static	 P01. Power-law degree distribution [Faloutsos et. al.'99, Kleinberg et. al.'99, Chakrabarti et. al. '04, Newman'04] P02. Triangle Power Law [Tsourakakis '08] P03. Eigenvalue Power Law [Siganos et. al. '03] P04. Community structure [Flake et. al.'02, Girvan and Newman '02] P05. Clique Power Laws [Du et. al. '09] 	P12 . Snapshot Power Law [McGlohon et. al. `08]
dvnamic	 P06. Densification Power Law [Leskovec et. al.'05] P07. Small and shrinking diameter [Albert and Barabási '99, Leskovec et. al. '05, McGlohon et. al. '08] P08. Gelling point [McGlohon et. al. '08] P09. Constant size 2nd and 3rd connected components [McGlohon et. al. '08] P10. Principal Eigenvalue Power Law [Akoglu et. al. '08] P11. Bursty/self-similar edge/weight additions [Gomez and Santonja '98, Gribble et. al. '98, Crovella and Bestavros '99, McGlohon et. al. '08] 	 P13. Weight Power Law [McGlohon et. al. `08] P14. Skewed call duration distributions [Vaz de Melo et. al. `10]

RTG: A Recursive Realistic Graph Generator using Random Typing Leman Akoglu and Christos Faloutsos. *ECML PKDD*'09.

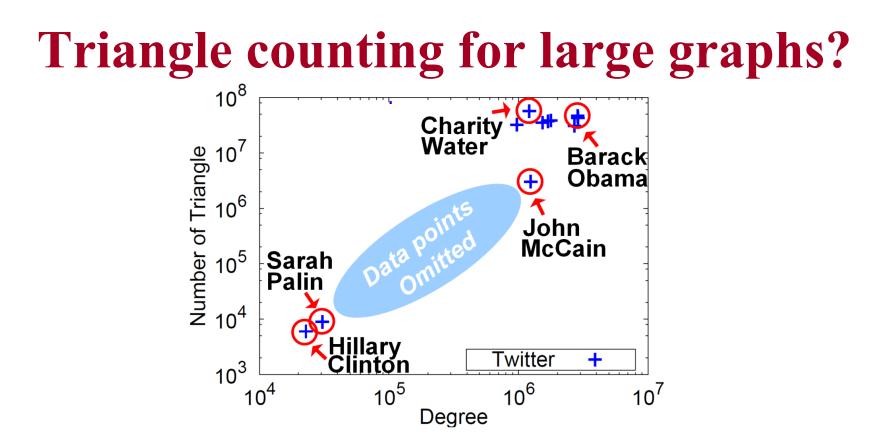
Real Graph Patterns

	unweighted	weighted
static	 P01. Power-law degree distribution [Faloutsos et. al.'99, Kleinberg et. al.'99, Chakrabarti et. al. '04, Newman'04] P02. Triangle Power Law [Tsourakakis '08] P03. Eigenvalue Power Law [Siganos et. al. '03] P04. Community structure [Flake et. al.'02, Girvan and Newman '02] P05. Clique Power Laws [Du et. al. '09] 	P12 . Snapshot Power Law [McGlohon et. al. `08]
dvnamic	 P06. Densification Power Law [Leskovec et. al.'05] P07. Small and shrinking diameter [Albert and Barabási '99, Leskovec et. al. '05, McGlohon et. al. '08] P08. Gelling point [McGlohon et. al. '08] P09. Constant size 2nd and 3rd connected components [McGlohon et. al. '08] P10. Principal Eigenvalue Power Law [Akoglu et. al. '08] P11. Bursty/self-similar edge/weight additions [Gomez and Santonja '98, Gribble et. al. '98, Crovella and Bestavros '99, McGlohon et. al. '08] 	P13. Weight Power Law [McGlohon et. al. '08] P14. Skewed call duration distributions [Vaz de Melo et. al. '10]

RTG: A Recursive Realistic Graph Generator using Random Typing Leman Akoglu and Christos Faloutsos. *ECML PKDD*'09.

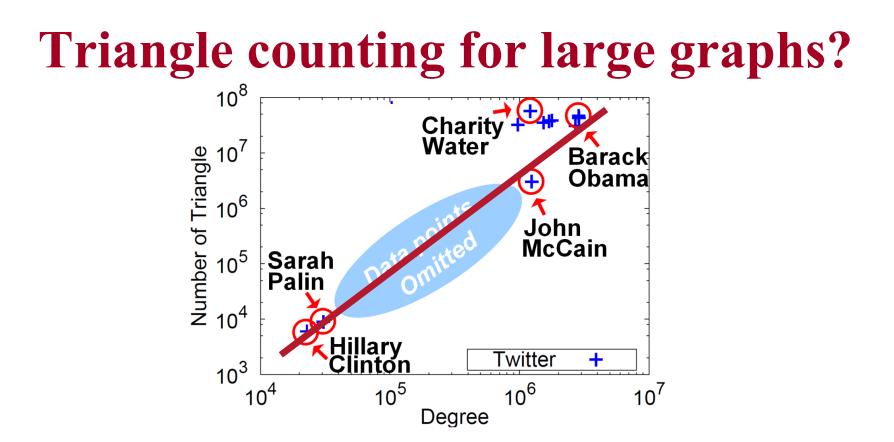
Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

WIN'11



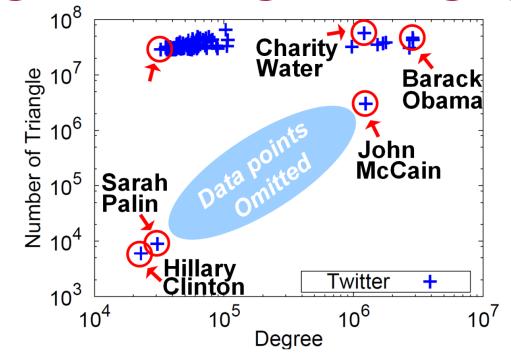
Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

WIN'11



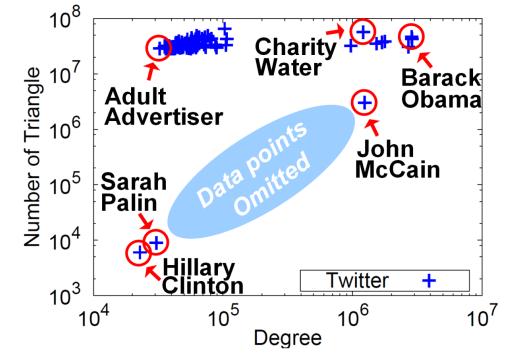
Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

WIN'11



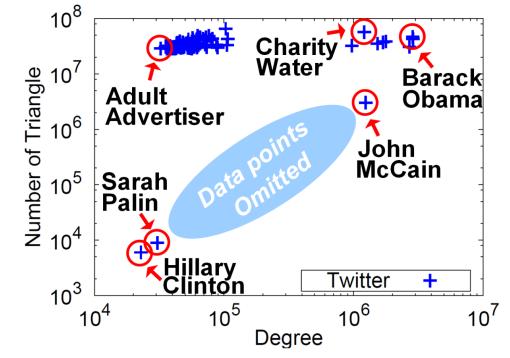
Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

WIN'11



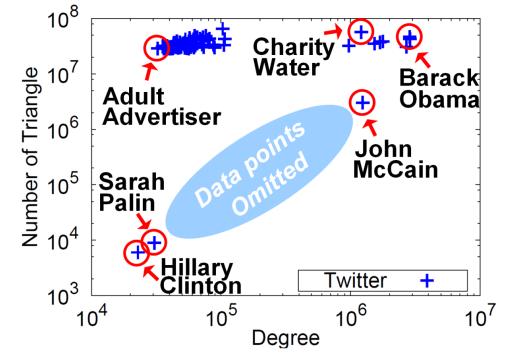
Anomalous nodes in Twitter(~ 3 billion edges) [U Kang, Brendan Meeder, +, PAKDD'11]

WIN'11



Q: How to compute # triangles in B-node graph? (O(d_{max} ** 2))?

WIN'11



Q: How to compute # triangles in B-node graph? (O(d_{max} ** 2))? A: cubes of eigvals

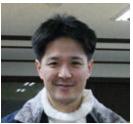
C. Faloutsos (CMU)

WIN'11

Outline

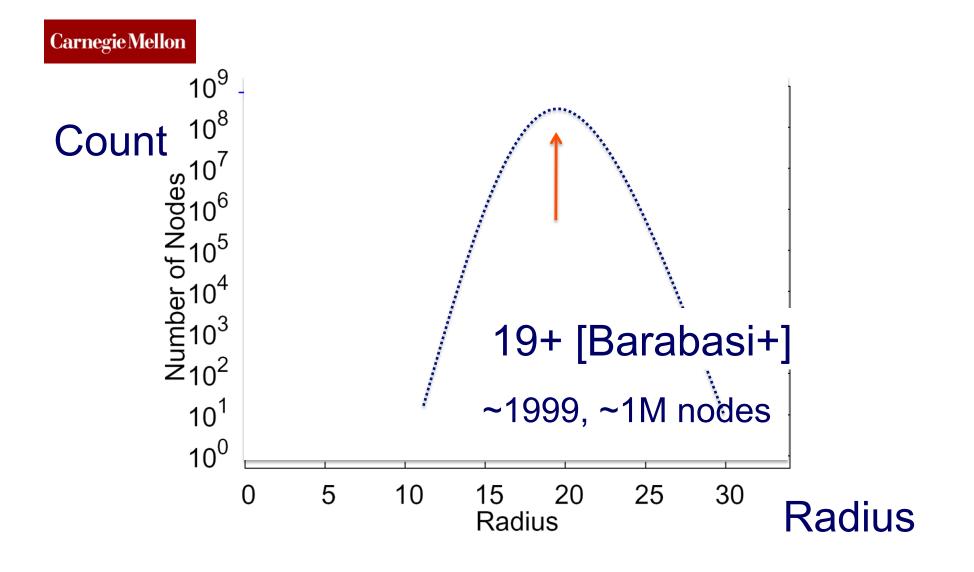
- Introduction Motivation
- Problem#1: Patterns in graphs
 - overview
 - Triangles
 - Diameter
 - `Eigenspokes'
 - Phonecall duration
- Problem#2: Tools
- Conclusions

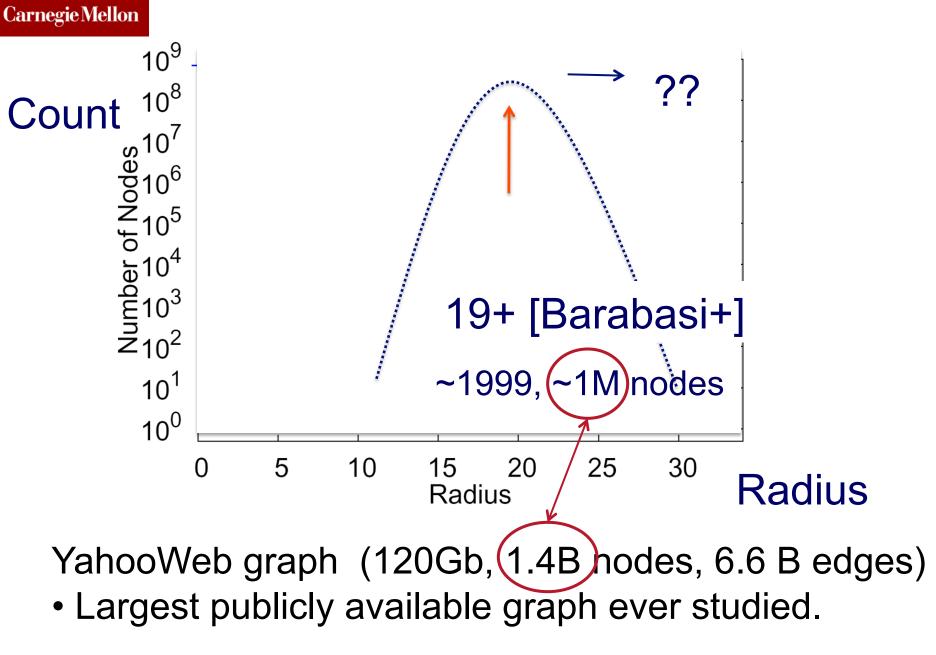
WIN'11



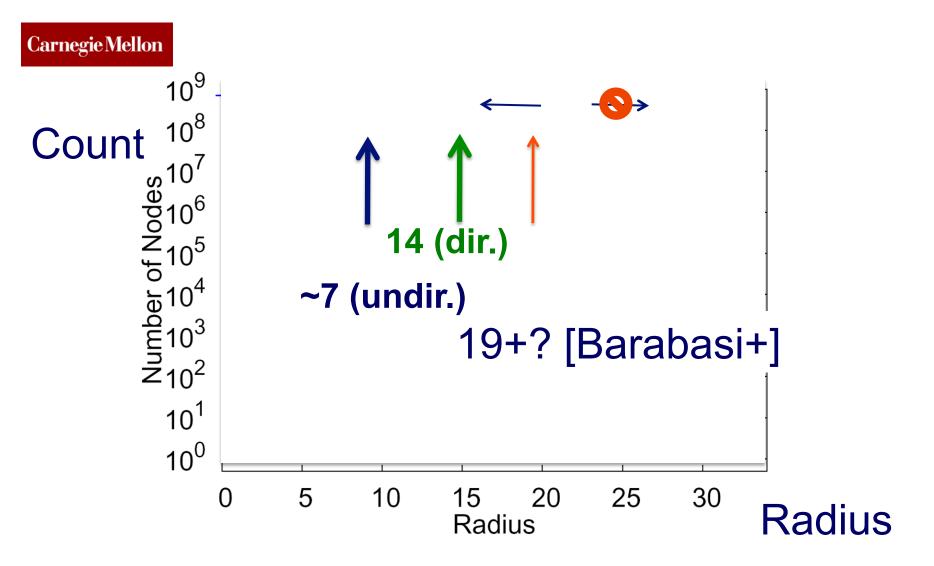
HADI for diameter estimation

- Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM'10
- Naively: diameter needs O(N**2) space and up to O(N**3) time – prohibitive (N~1B)
- Our HADI: linear on E (~10B)
 - Near-linear scalability wrt # machines
 - Several optimizations -> 5x faster



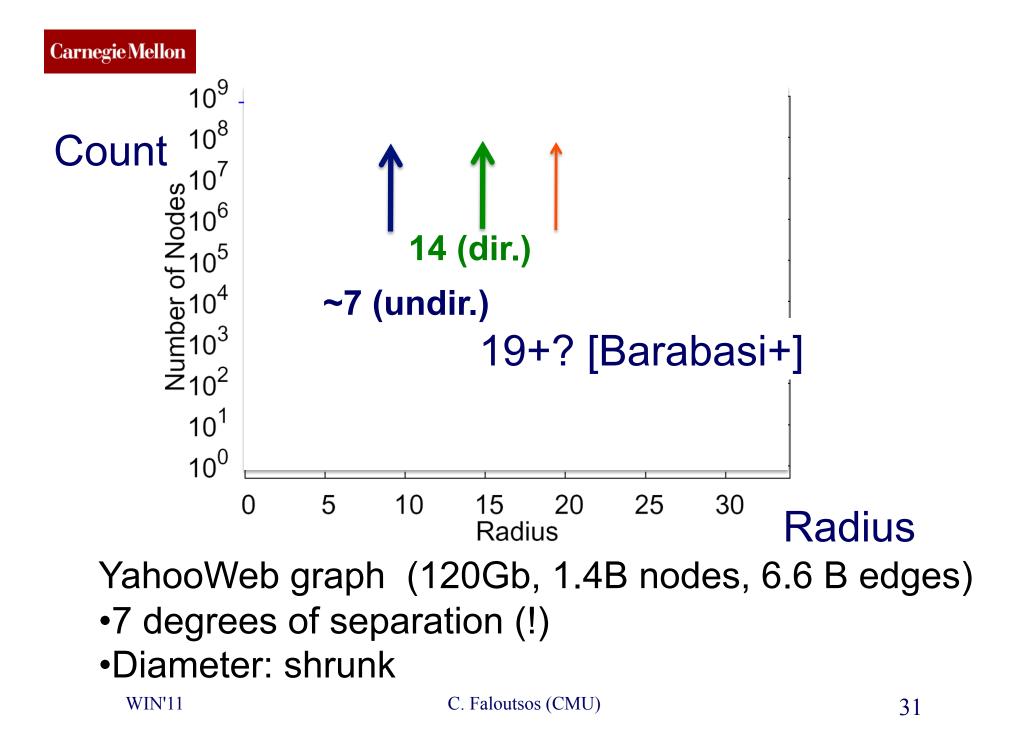


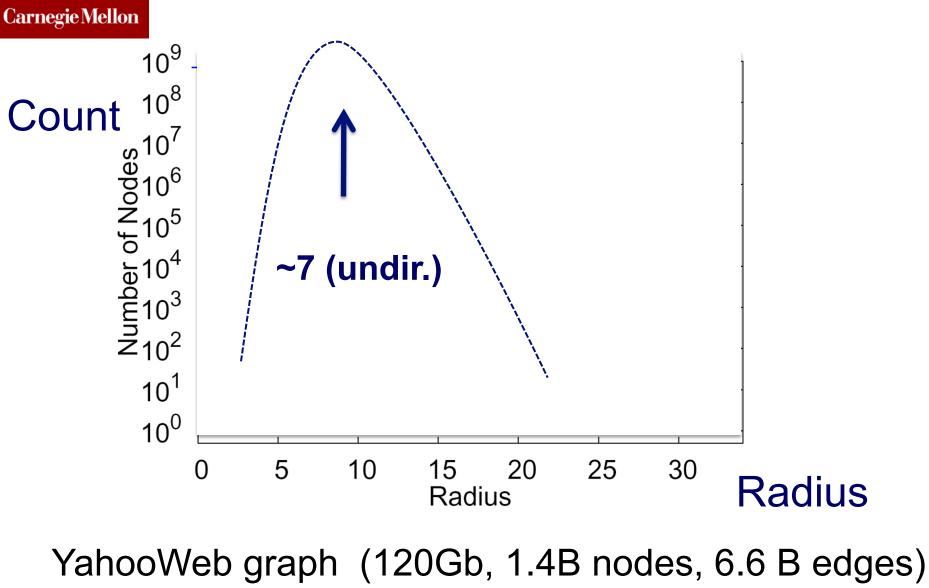
WIN'11



YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

• Largest publicly available graph ever studied.

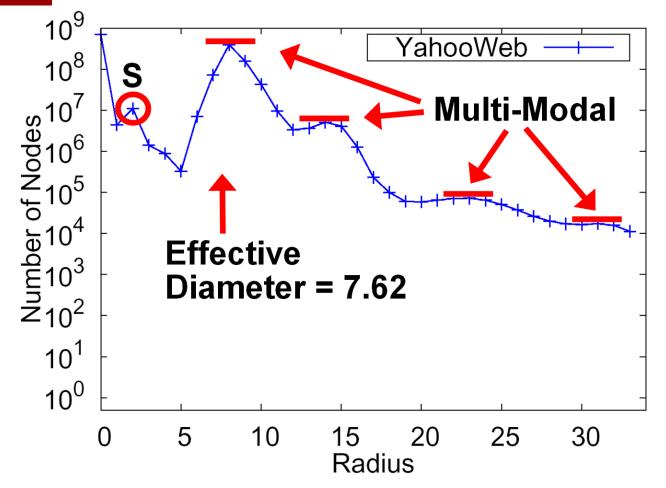




Q: Shape?

WIN'11

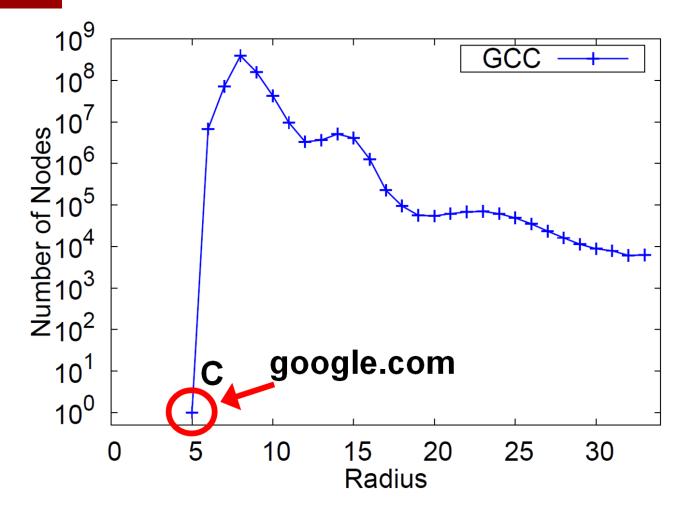
Carnegie Mellon



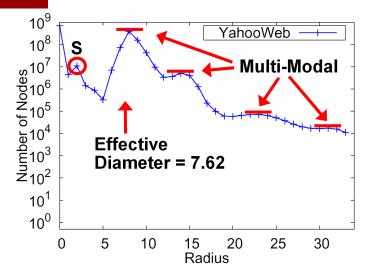
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality (?!)

Carnegie Mellon

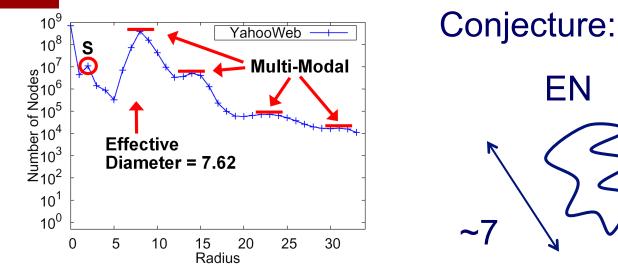


Radius Plot of GCC of YahooWeb.



YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

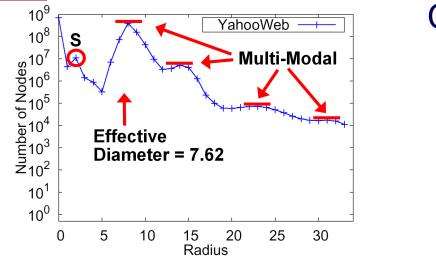
- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores . WIN'11 C. Faloutsos (CMU)

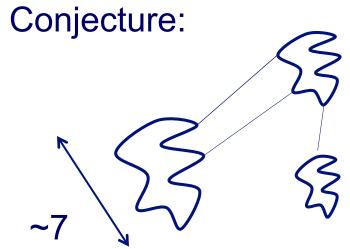


EN

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

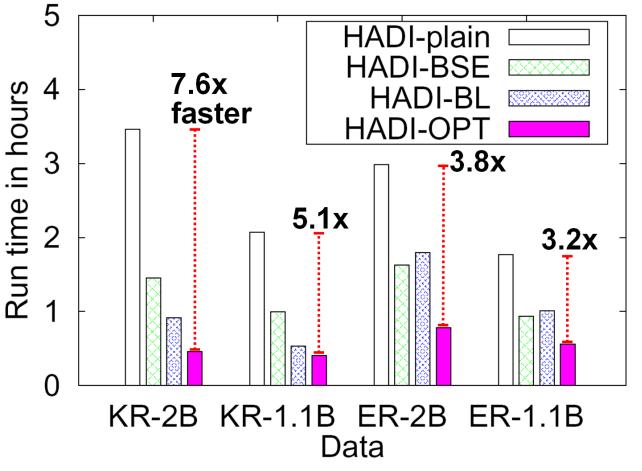
- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores . WIN'11 C. Faloutsos (CMU)





YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores . WIN'11 C. Faloutsos (CMU)



Running time - Kronecker and Erdos-Renyi Graphs with billions edges.

Outline

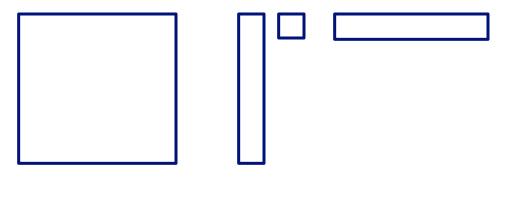
- Introduction Motivation
- Problem#1: Patterns in graphs
 - overview
 - Triangles
 - Diameter
- `Eigenspokes'
 - Phonecall duration
 - Problem#2: Tools
 - Conclusions

WIN'11

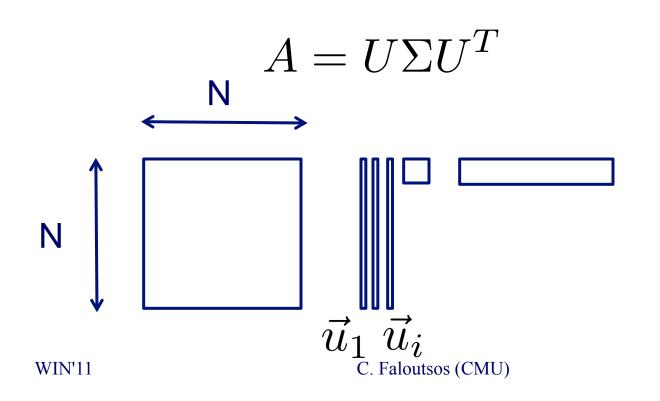
B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju and Christos
Faloutsos: *EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs*, PAKDD 2010, Hyderabad, India, 21-24 June 2010.

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

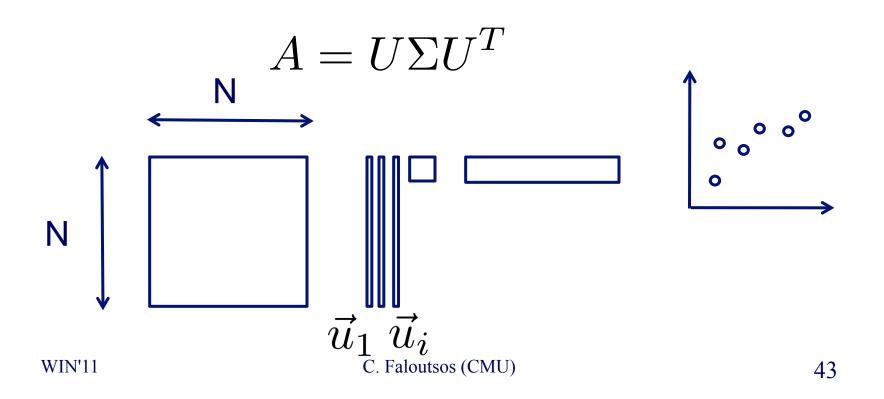
$$A = U\Sigma U^T$$



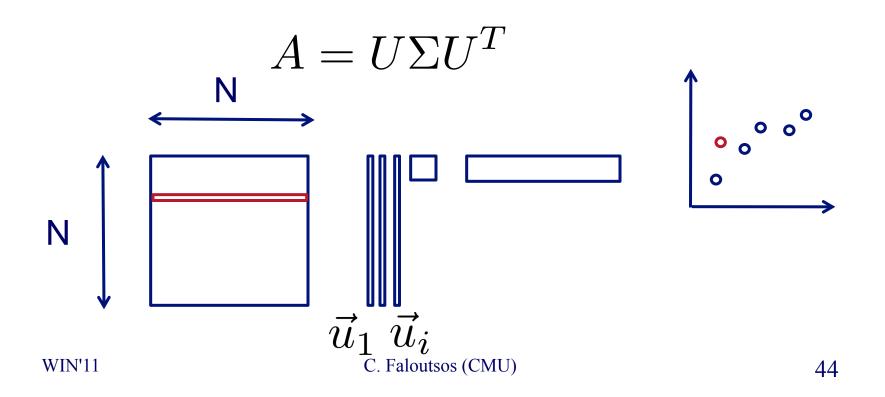
- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)



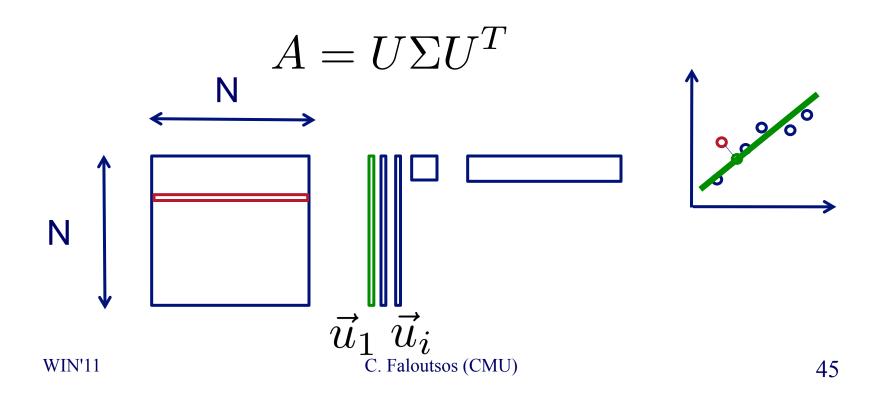
- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)



- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

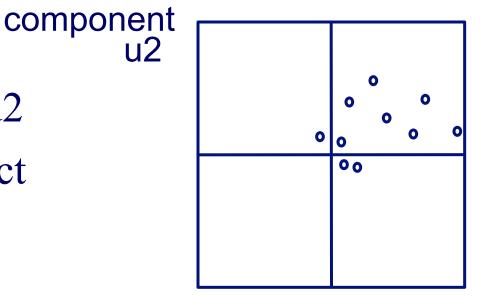


- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)



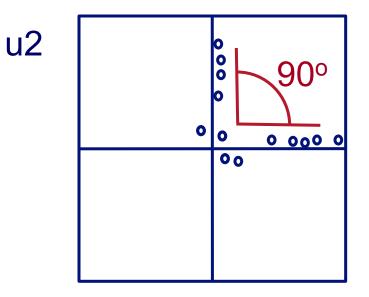
2nd Principal

- EE plot:
- Scatter plot of scores of u1 vs u2
- One would expect
 - Many points @ origin
 - A few scattered
 ~randomly



u1 1st Principal component

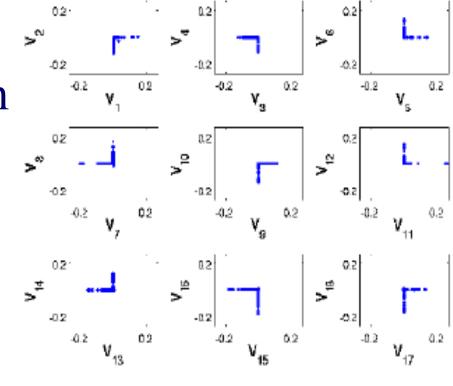
- EE plot:
- Scatter plot of scores of u1 vs u2
- One would expect
 - Many points @ origin



u1

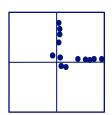
EigenSpokes - pervasiveness

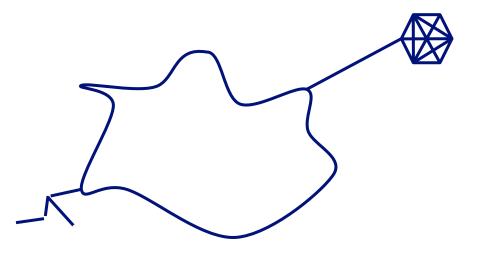
- Present in mobile social graph
 - across time and space



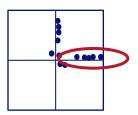
C. Faloutsos (CMU)

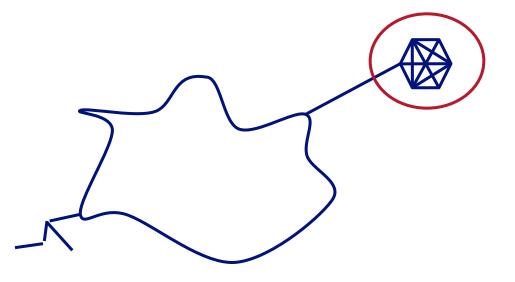
Near-cliques, or nearbipartite-cores, loosely connected



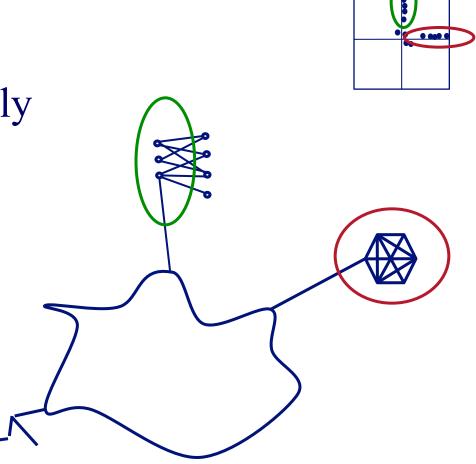


Near-cliques, or nearbipartite-cores, loosely connected





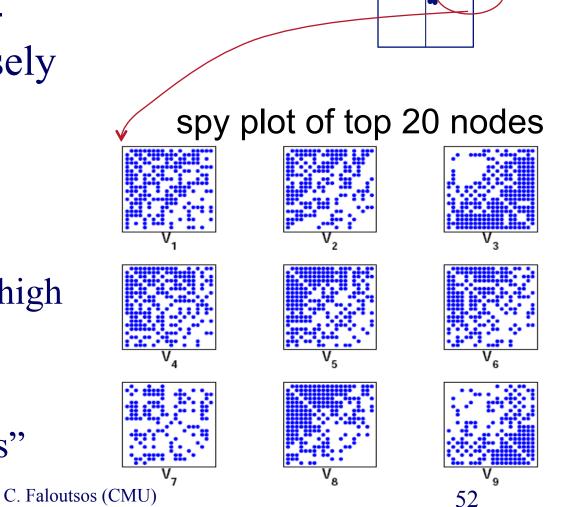
Near-cliques, or nearbipartite-cores, loosely connected



Near-cliques, or nearbipartite-cores, loosely connected

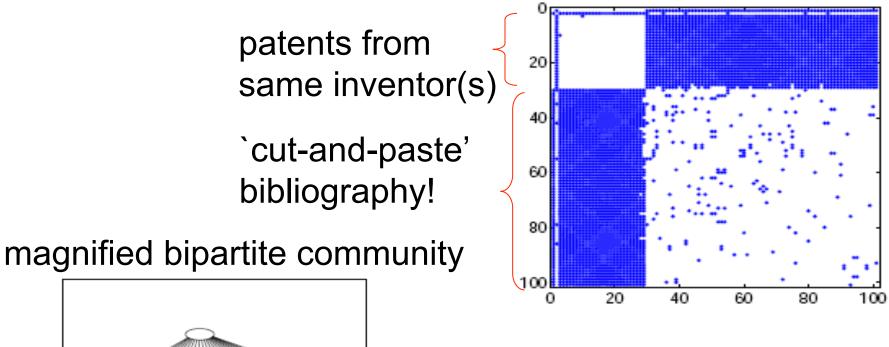
So what?

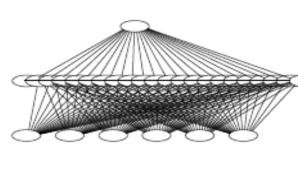
- Extract nodes with high scores
- high connectivity
- Good "communities"



WIN'11

Bipartite Communities!





WIN'11

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
 - overview
 - Triangles
 - Diameter
 - `Eigenspokes'
 - Phonecall duration
- Problem#2: Tools
- Conclusions

WIN'11

Real Graph Patterns

	unweighted	weighted
static	 P01. Power-law degree distribution [Faloutsos et. al.'99, Kleinberg et. al.'99, Chakrabarti et. al. '04, Newman'04] P02. Triangle Power Law [Tsourakakis '08] P03. Eigenvalue Power Law [Siganos et. al. '03] P04. Community structure [Flake et. al.'02, Girvan and Newman '02] P05. Clique Power Laws [Du et. al. '09] 	P12 . Snapshot Power Law [McGlohon et. al. `08]
dvnamic	 P06. Densification Power Law [Leskovec et. al.'05] P07. Small and shrinking diameter [Albert and Barabási '99, Leskovec et. al. '05, McGlohon et. al. '08] P08. Gelling point [McGlohon et. al. '08] P09. Constant size 2nd and 3rd connected components [McGlohon et. al. '08] P10. Principal Eigenvalue Power Law [Akoglu et. al. '08] P11. Bursty/self-similar edge/weight additions [Gomez and Santonja '98, Gribble et. al. '98, Crovella and Bestavros '99, McGlohon et. al. '08] 	P13. Weight Power Law [McGlohon et. al. `08] P14. Skewed call duration distributions [Vaz de Melo et. al. `10]

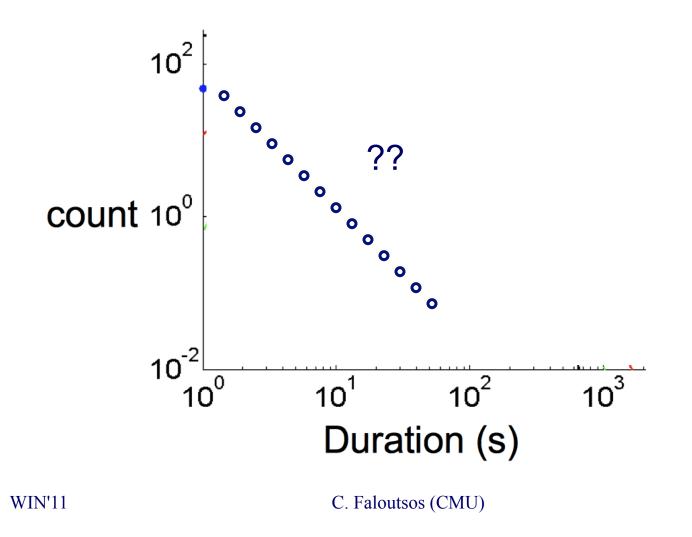
RTG: A Recursive Realistic Graph Generator using Random Typing Leman Akoglu and Christos Faloutsos. *ECML PKDD*'09.

Duration of phonecalls

Surprising Patterns for the Call Duration Distribution of Mobile Phone Users

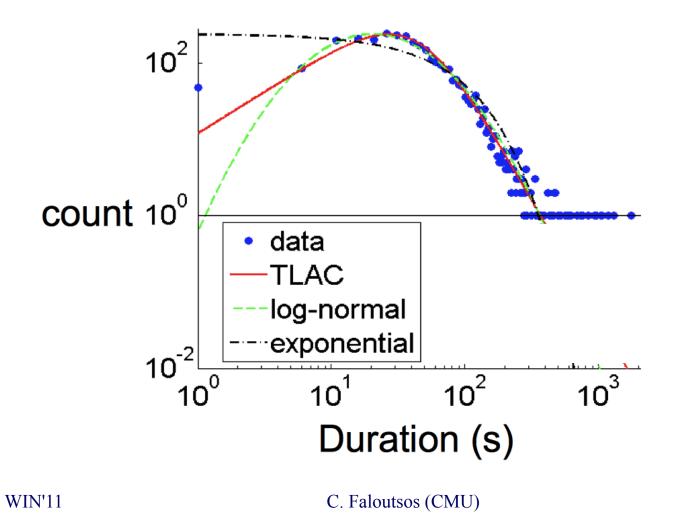
Pedro O. S. Vaz de Melo, LemanAkoglu, Christos Faloutsos, AntonioA. F. LoureiroPKDD 2010

Probably, power law (?)



57

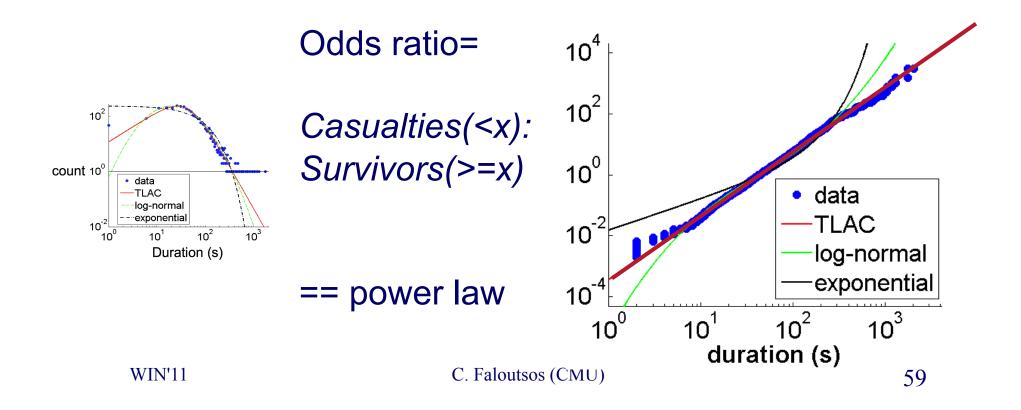
No Power Law!?



58

'TLaC: Lazy Contractor'

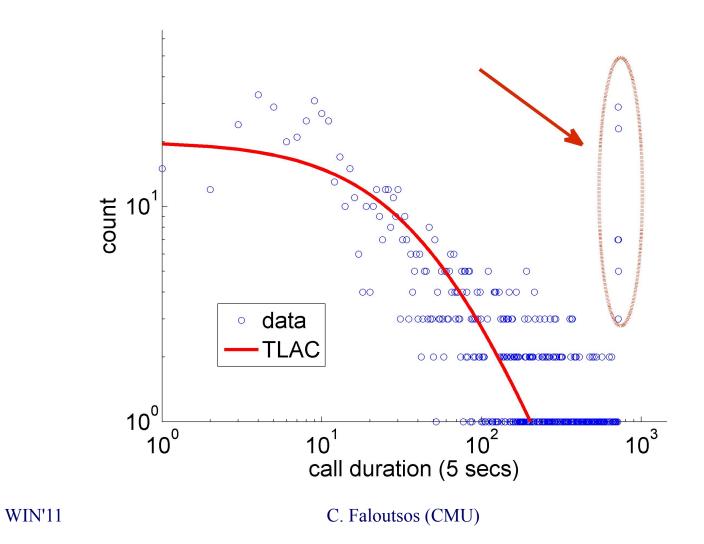
- The longer a task (phonecall) has taken,
- The even longer it will take



Data Description

- Data from a private mobile operator of a large city
 - 4 months of data
 - 3.1 million users
 - more than 1 billion phone records
- Over 96% of 'talkative' users obeyed a TLAC distribution ('talkative': >30 calls)

Outliers:



61

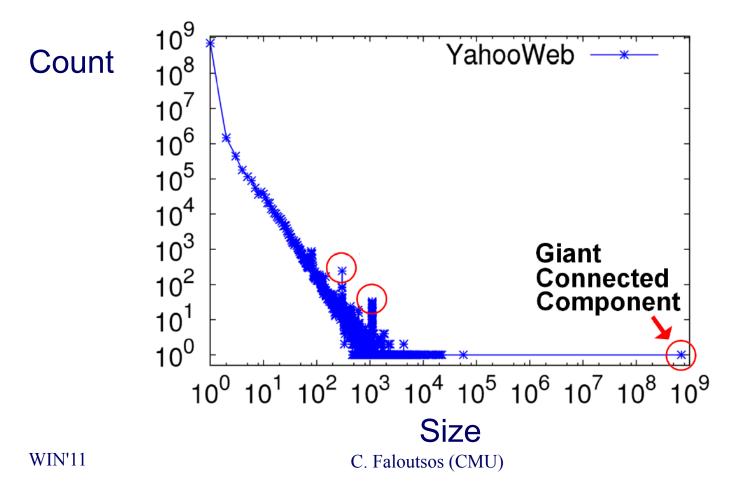
Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
 - `Eigenspokes'
 - Phonecall duration
 - Connected components
- Problem#2: Tools
- Conclusions

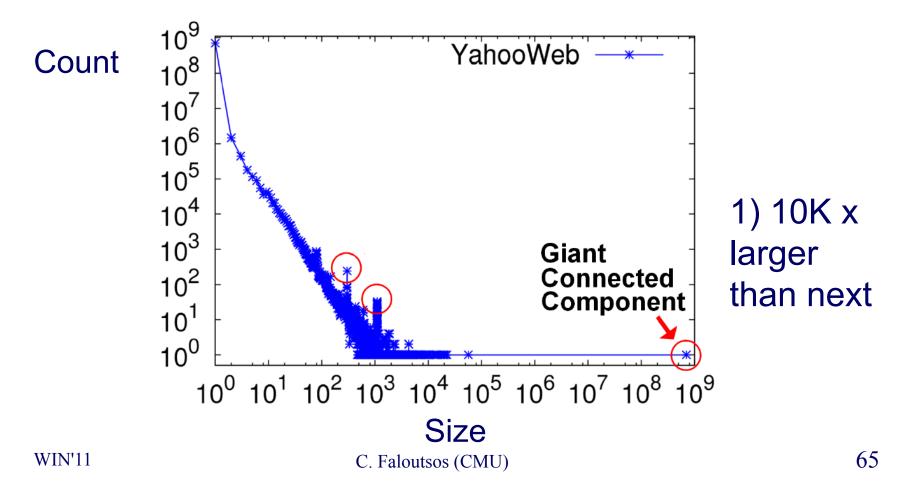
Generalized Iterated Matrix Vector Multiplication (GIMV)

<u>PEGASUS: A Peta-Scale Graph Mining</u> <u>System - Implementation and Observations</u>. U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. (ICDM) 2009, Miami, Florida, USA. Best Application Paper (runner-up).

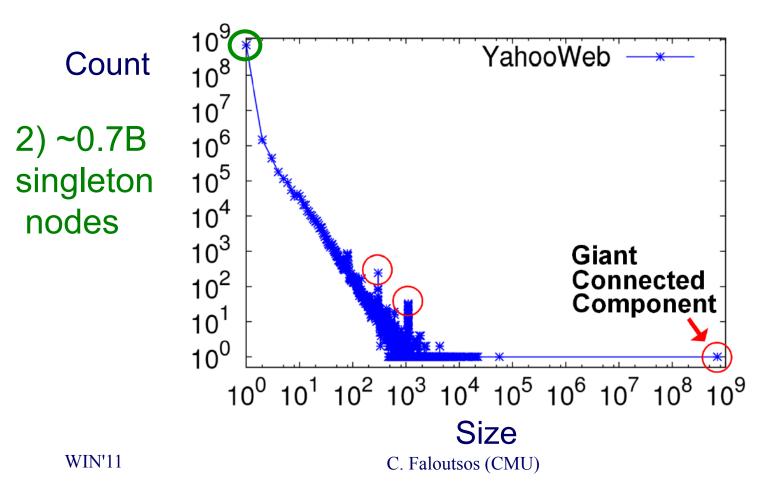
• Connected Components – 4 observations:



• Connected Components

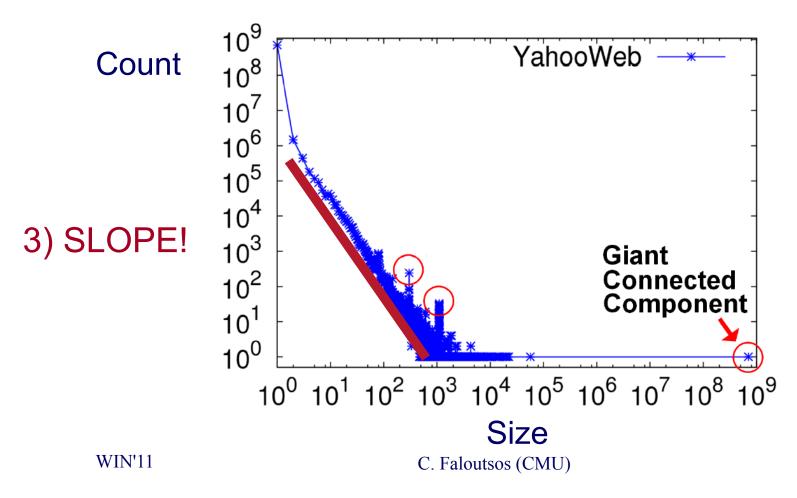


• Connected Components

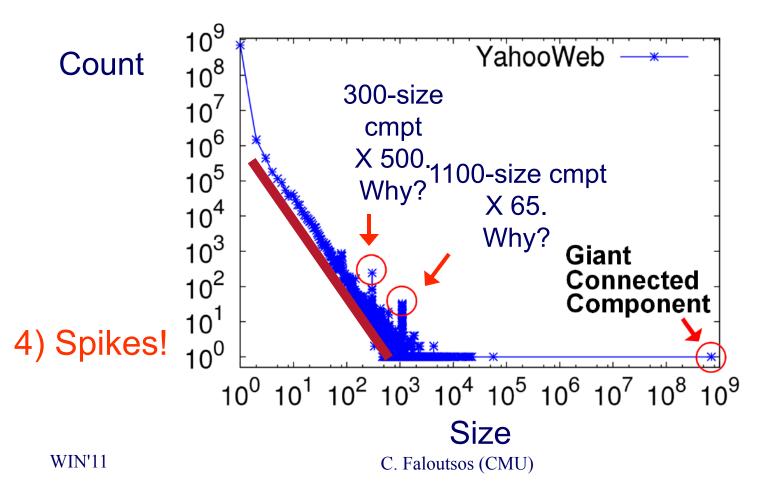


66

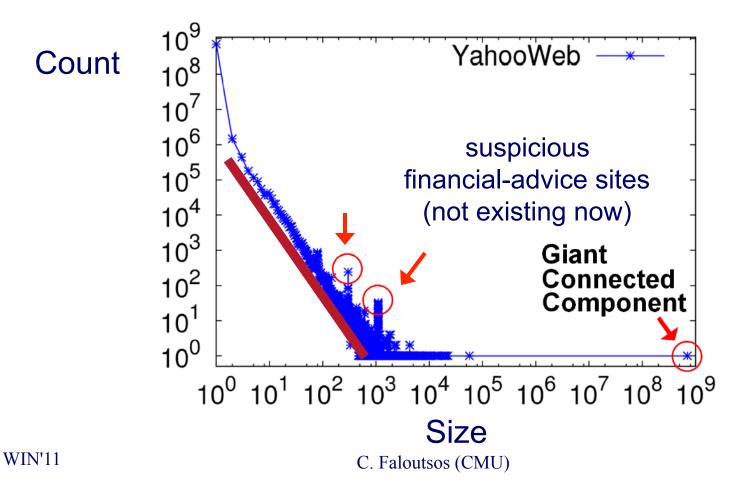
• Connected Components



• Connected Components



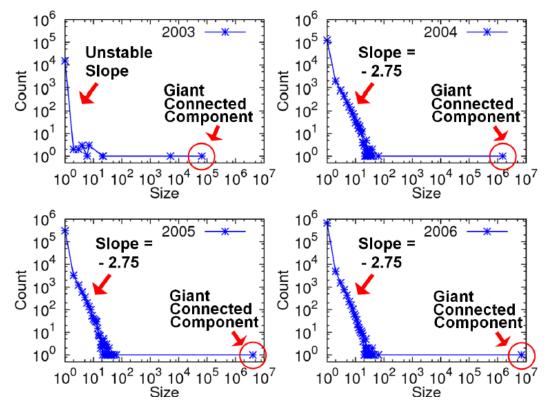
• Connected Components



69

GIM-V At Work

- Connected Components over Time
- LinkedIn: 7.5M nodes and 58M edges



Stable tail slope after the gelling point

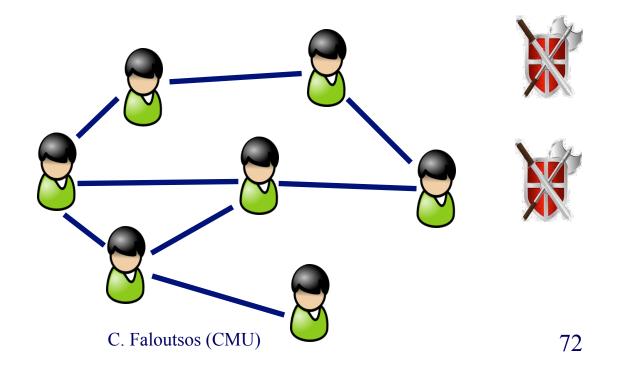
WIN'11

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
 - Immunization
 - BP
 - visualization
- Conclusions

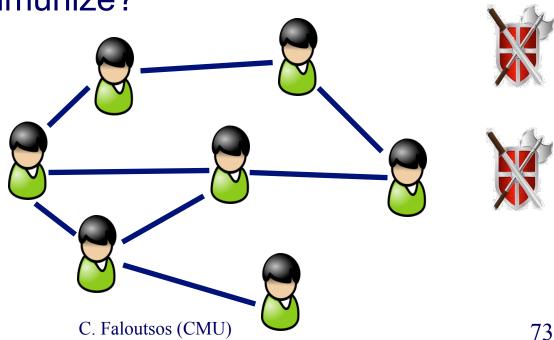
Immunization and epidemic thresholds

- Q1: which nodes to immunize?
- Q2: will a virus vanish, or will it create an epidemic?



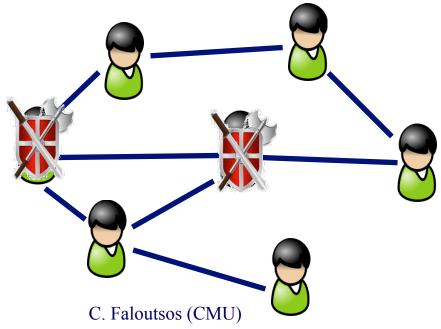
•Given

a network,
k vaccines, and
the virus details
Which nodes to immunize?



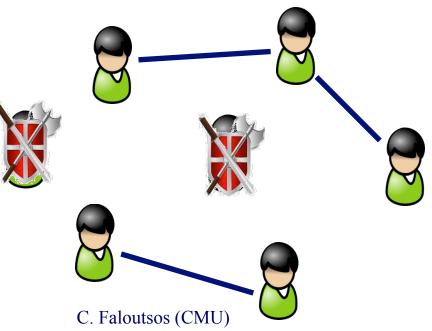
•Given

a network,
k vaccines, and
the virus details
Which nodes to immunize?



•Given

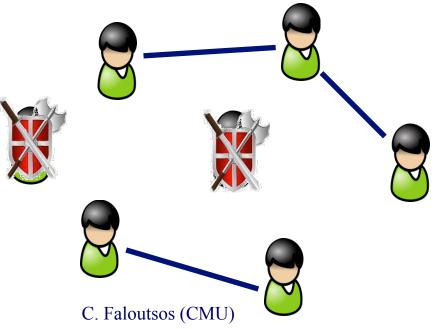
a network,
k vaccines, and
the virus details
Which nodes to immunize?



•Given

a network,
k vaccines, and
the virus details
Which nodes to immunize?

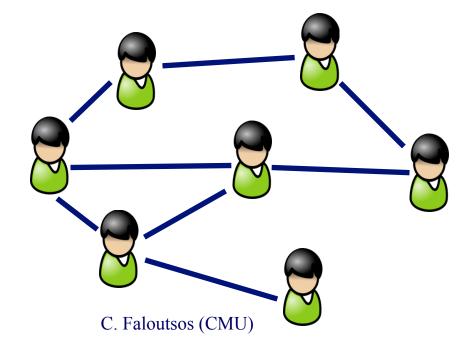
A: immunize the ones that maximally raise the `epidemic threshold' [Tong+, ICDM'10]



Q2: will a virus take over?

- Flu-like virus (no immunity, 'SIS')
- Mumps (life-time immunity, 'SIR')
- Pertussis (finite-length immunity, 'SIRS')

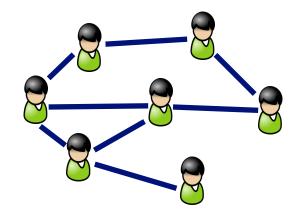
β: attack prob δ: heal prob



Q2: will a virus take over?

- Flu-like virus (no immunity, 'SIS')
- Mumps (life-time immunity, 'SIR')
- Pertussis (finite-length immunity, 'SIRS')

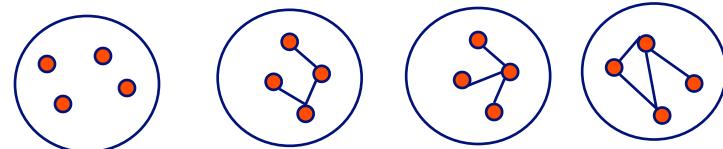
- β: attack prob δ: heal prob
- A: depends on connectivity (avg degree? Something else?)



Epidemic threshold $\boldsymbol{\tau}$

What should τ depend on?

- avg. degree? and/or highest degree?
- and/or variance of degree?
- and/or third moment of degree?
- and/or diameter?



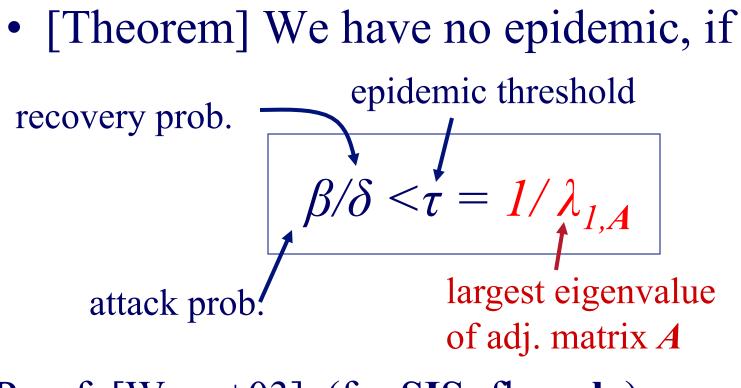
Epidemic threshold - SIS

• [Theorem] We have no epidemic, if

$$\beta/\delta < \tau = 1/\lambda_{l,A}$$

WIN'11

Epidemic threshold - SIS



Proof: [Wang+03] (for SIS=flu only)

Epidemic threshold - SIS

• [Theorem] We have no epidemic, if

$$\beta/\delta < \tau = 1/\lambda_{I,A}$$

What about other V.P.M.? (SIR, SIRS, etc?) Proof: [Wang+03] (for SIS=flu only)

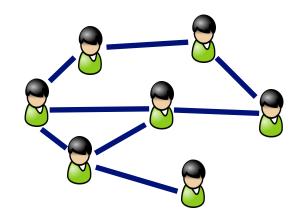
WIN'11

Theorem:

- For **all** typical virus propagation models (flu, mumps, pertussis, HIV, etc)
- The only connectivity measure that matters, is

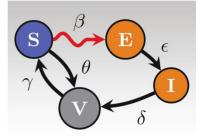
 $1/\lambda_1$

the first eigenvalue of the
 adj. matrix
[Prakash+, '10, arxiv]



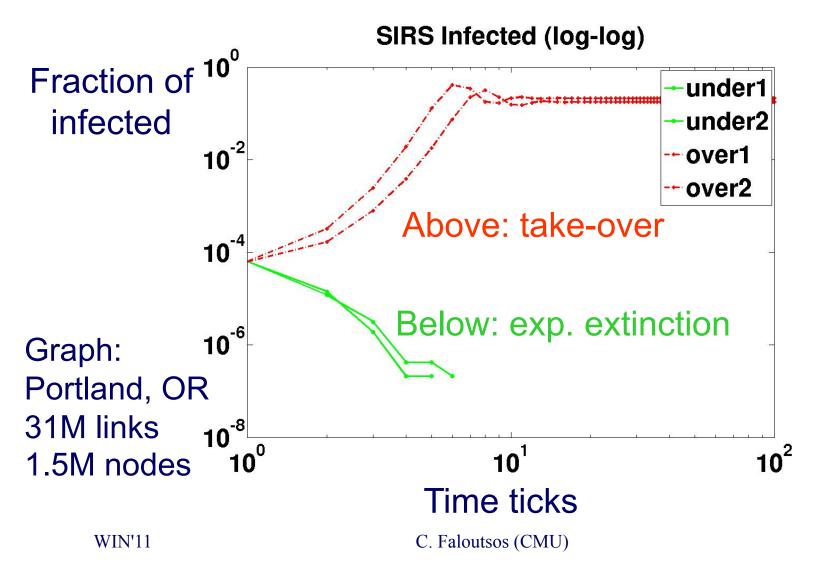
Thresholds for some models

- *s* = *effective strength*
- s < 1 : below threshold



Models	Effective Strength (s)	Threshold (tipping point)
SIS, SIR, SIRS, SEIR	$s = \lambda \cdot \left(\frac{\beta}{\delta}\right)$	_
SIV, SEIV	$s = \lambda \cdot \left(\frac{\beta \gamma}{\delta(\gamma + \theta)} \right)$	<i>s</i> = 1
$SI_{1}I_{2}V_{1}V_{2}$ (H.I.V.)	$s = \lambda \cdot \left(\frac{\beta_1 v_2 + \beta_2 \varepsilon}{v_2 (\varepsilon + v_1)} \right)$	

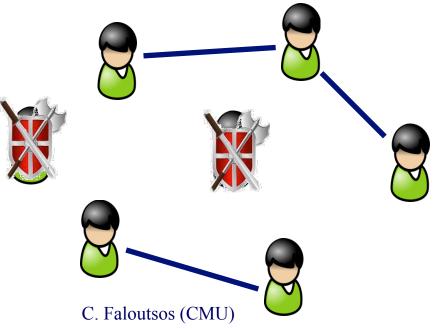
A2: will a virus take over?



•Given

a network,
k vaccines, and
the virus details
Which nodes to immunize?

A: immunize the ones that maximally raise the `epidemic threshold' [Tong+, ICDM'10]



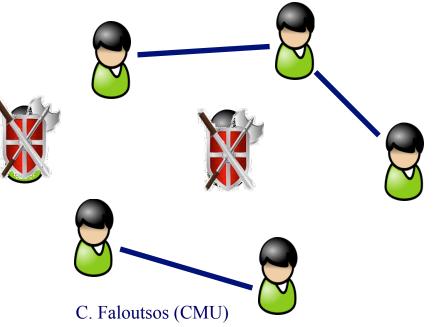
WIN'11

•Given

a network,
k vaccines, and
the virus details
Which nodes to immunize?

A: immunize the ones that

Max eigen-drop Δλ For any virus!

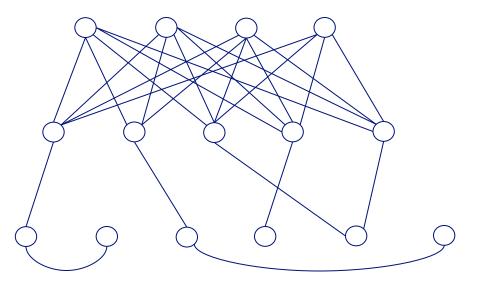


Outline

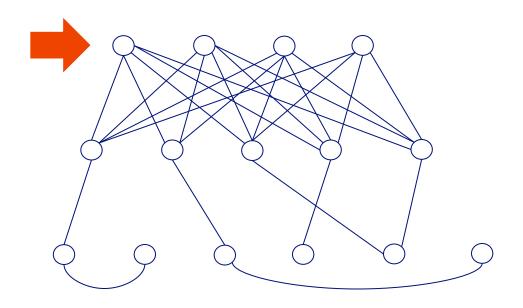
- Introduction Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
 - Immunization
 - BP
 - visualization
- Conclusions

E-bay Fraud detection

w/ Polo Chau & Shashank Pandit, CMU [www'07]



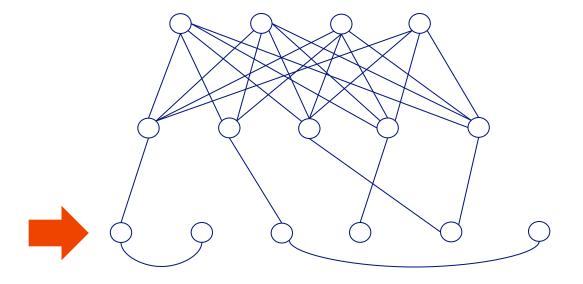
E-bay Fraud detection



C. Faloutsos (CMU)

90

E-bay Fraud detection

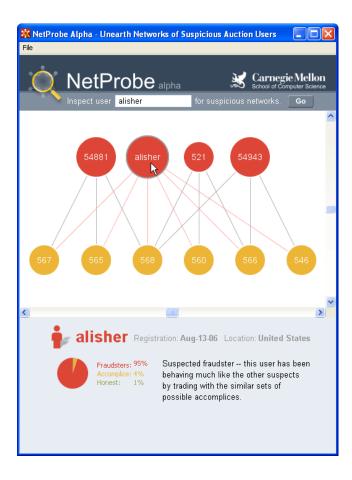


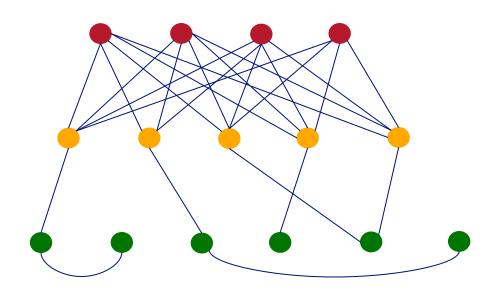
WIN'11

C. Faloutsos (CMU)

91

E-bay Fraud detection - NetProbe





WIN'11

Popular press

The Washington Post Los Angeles Times

And less desirable attention:

• E-mail from 'Belgium police' ('copy of your code?')

WIN'11

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
 - Immunization
- BP theory
 - visualization
- Conclusions

Guilt-by-Association Techniques



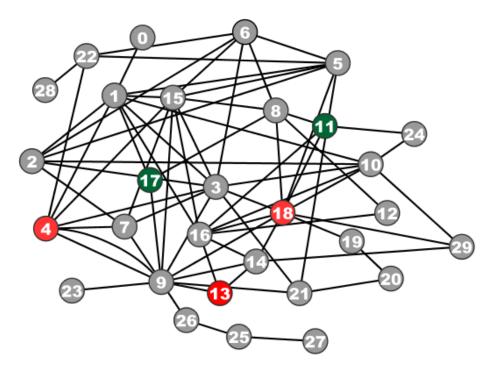
Given:

- graph and
- few labeled nodes

Find: class (red/green) for rest nodes Assuming: network effects (homophily/ heterophily)

Correspondence of Methods

Random Walk with Restarts (RWR)GoogleSemi-supervised Learning (SSL)Belief Propagation (BP)Bayesian



Correspondence of Methods

Random Walk with Restarts $(RWR) \approx$ Semi-supervised Learning $(SSL) \approx$ Belief Propagation (BP)

Method	Matrix		unknown		known
RWR	$[I - c AD^{-1}]$	×	X	=	(1-c) y
SSL	$[\mathbf{I} + \mathbf{a}(\mathbf{D} - \mathbf{A})]$	×	X	=	У
FABP	$[\mathbf{I} + a \mathbf{D} - c'\mathbf{A}]$	×	b _h	=	φ _h
		0 1 0	?		0 1 1

Unifying Guilt-by-Association Approaches: Theorems and Fast Algorithms. Danai Koutra, et al PKDD'11

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
 - Immunization
 - BP
- visualization
- Conclusions

Apolo

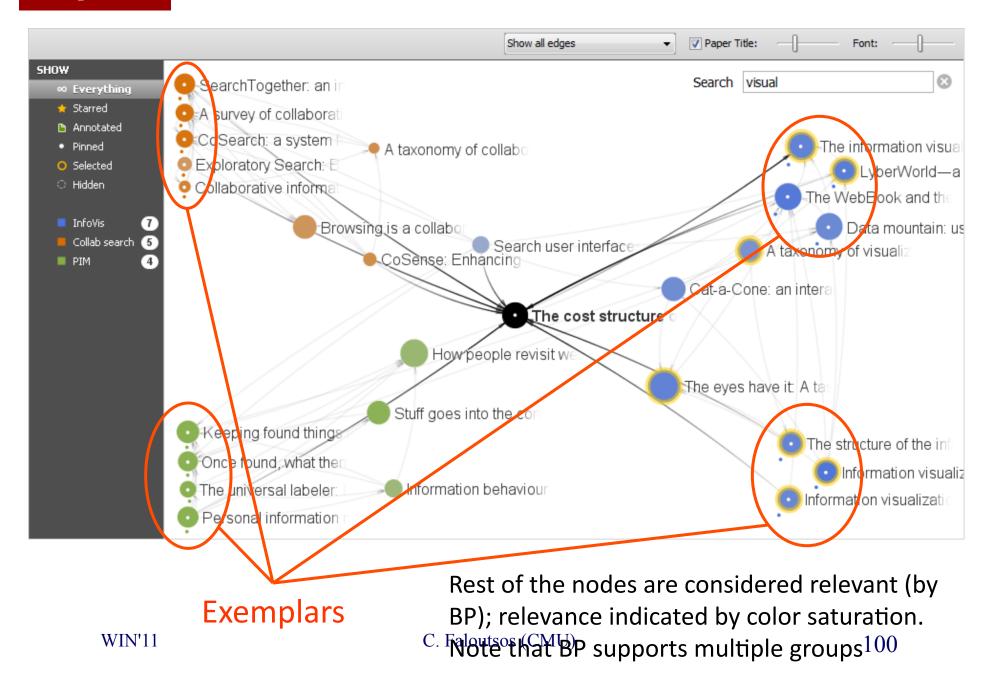
Making Sense of Large Network Data: Combining Rich User Interaction & Machine Learning *CHI 2011, Vancouver, Canada*

Polo Chau Prof.

Prof. Niki Kittur

Prof. Jason Hong Prof. Christos Faloutsos

Carnegie Mellon



Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
 - Immunization
 - BP
 - visualization
- Conclusions

OVERALL CONCLUSIONS – low level:

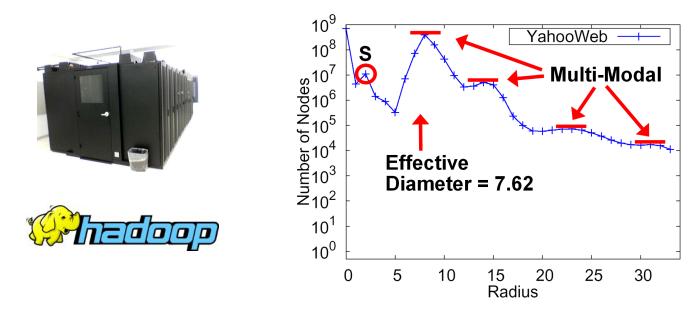
- Several new **patterns** (eigenspokes, radius plot etc)
- New tools and theoretical results

– belief propagation (~ RWR ~ SSL)

– Immunization: $\Delta \lambda$, for 'any' V.P.M.

OVERALL CONCLUSIONS – high level

• **BIG DATA: ->** patterns/outliers that are invisible otherwise



- Leman Akoglu, Christos Faloutsos: *RTG: A Recursive Realistic Graph Generator Using Random Typing*. ECML/PKDD (1) 2009: 13-28
- Deepayan Chakrabarti, Christos Faloutsos: *Graph mining: Laws, generators, and algorithms*. ACM Comput. Surv. 38(1): (2006)

- Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jure Leskovec, Christos Faloutsos: *Epidemic thresholds in real networks*. ACM Trans. Inf. Syst. Secur. 10(4): (2008)
- Deepayan Chakrabarti, Jure Leskovec, Christos Faloutsos, Samuel Madden, Carlos Guestrin, Michalis Faloutsos: *Information Survival Threshold in Sensor and P2P Networks*. INFOCOM 2007: 1316-1324

 Christos Faloutsos, Tamara G. Kolda, Jimeng Sun: Mining large graphs and streams using matrix and tensor tools. Tutorial, SIGMOD Conference 2007: 1174

 T. G. Kolda and J. Sun. Scalable Tensor Decompositions for Multi-aspect Data Mining. In: ICDM 2008, pp. 363-372, December 2008.

- Jure Leskovec, Jon Kleinberg and Christos Faloutsos *Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations*, KDD 2005 (Best Research paper award).
- Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos: *Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication.* PKDD 2005: 133-145

- Jimeng Sun, Yinglian Xie, Hui Zhang, Christos Faloutsos. Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM, Minneapolis, Minnesota, Apr 2007.
- Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos, *GraphScope: Parameterfree Mining of Large Time-evolving Graphs* ACM SIGKDD Conference, San Jose, CA, August 2007

 Jimeng Sun, Dacheng Tao, Christos Faloutsos: *Beyond streams and graphs: dynamic tensor analysis*. KDD 2006: 374-383

- Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan, *Fast Random Walk with Restart and Its Applications*, ICDM 2006, Hong Kong.
- Hanghang Tong, Christos Faloutsos, *Center-Piece Subgraphs: Problem Definition and Fast Solutions*, KDD 2006, Philadelphia, PA

 Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: Fast best-effort pattern matching in large attributed graphs. KDD 2007: 737-746

Project info

www.cs.cmu.edu/~pegasus

Koutra,

Prakash,

Aditya

Akoglu,	Kang, U	McGlohon,	Tong,
Leman		Mary	Hanghang
\star Out, in '12			0 0

Thanks to: NSF IIS-1017415, 0705359, 0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

OVERALL CONCLUSIONS – high level

• **BIG DATA: ->** patterns/outliers that are invisible otherwise

