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Our goal: 

Open source system for mining huge graphs: 

PEGASUS project (PEta GrAph mining 
System)  

•  www.cs.cmu.edu/~pegasus 
•  code and papers 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Conclusions 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

Recommendation 

systems 

WIN'11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

–  overview 
– Triangles 
– Diameter 
–  `Eigenspokes’ 
– Phonecall duration 

•  Problem#2: Tools 
•  Conclusions 
WIN'11 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

WIN'11 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  BIG DATA helps: finds patterns that 
would be ‘invisible’ 

WIN'11 
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Typical viewpoint 
•  ‘Signal’ and 
•  noise 
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MORE REALISTIC viewpoint 
•  ‘Signal’ and 
•  Weaker signal 
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MORE REALISTIC viewpoint 
•  ‘Signal’ and 
•  Weaker signal and 
•  Even weaker signal 
•  … 

BIG DATA helps 
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MORE REALISTIC viewpoint 
•  ‘Signal’ and 
•  Weaker signal and 
•  Even weaker signal 
•  … 

BIG DATA helps 
(and sampling may 

hurt) 
WIN'11 C. Faloutsos (CMU) 12 



CMU SCS 

C. Faloutsos (CMU) 13 

Graph mining 
•  Are real graphs random? 

WIN'11 
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Laws and patterns 
•  Are real graphs random? 
•  A: NO!! 

– Diameter (small, and decreasing!) 
–  in- and out- degree distributions (skewed/PL) 
–  # triangles (skewed) 
–  other (surprising) patterns 

•  So, let’s look at the data 

WIN'11 
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Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

WIN'11 
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Solution# S.2: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency 
matrix 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

WIN'11 
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Real Graph Patterns 
unweighted weighted    static 

P01. Power-law degree distribution [Faloutsos et. al.`99, 
Kleinberg et. al.`99, Chakrabarti et. al. `04, Newman`04] 
P02. Triangle Power Law [Tsourakakis `08] 
P03. Eigenvalue Power Law [Siganos et. al. `03] 
P04. Community structure [Flake et. al.`02, Girvan and 
Newman `02] 
P05. Clique Power Laws [Du et. al. ‘09]  

P12. Snapshot Power Law 
[McGlohon et. al. `08] 

 dynam
ic

 

P06. Densification Power Law [Leskovec et. al.`05] 
P07. Small and shrinking diameter [Albert and Barabási               
`99, Leskovec et. al. ‘05, McGlohon et. al. ‘08] 
P08. Gelling point [McGlohon et. al. `08]  
P09. Constant size 2nd and 3rd connected components 
[McGlohon et. al. `08]  
P10. Principal Eigenvalue Power Law [Akoglu et. al. `08] 
P11. Bursty/self-similar edge/weight additions [Gomez and 
Santonja `98, Gribble et. al. `98, Crovella and Bestavros `99, 
McGlohon et .al. `08] 

P13. Weight Power Law    
[McGlohon et. al. `08] 
P14. Skewed call duration 
distributions [Vaz de Melo et. 
al. `10] 

17 WIN'11 C. Faloutsos (CMU) RTG: A Recursive Realistic Graph Generator using Random Typing         
Leman Akoglu and Christos Faloutsos. ECML PKDD’09.  
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 
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Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 
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Triangle counting for large graphs? 

Q: How to compute # triangles in B-node 
graph? (O(dmax ** 2) )? 

24 WIN'11 24 C. Faloutsos (CMU) 
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Triangle counting for large graphs? 

Q: How to compute # triangles in B-node 
graph? (O(dmax ** 2) )? A: cubes of eigvals 

25 WIN'11 25 C. Faloutsos (CMU) 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

–  overview 
– Triangles 
– Diameter 
–  `Eigenspokes’ 
– Phonecall duration 

•  Problem#2: Tools 
•  Conclusions 
WIN'11 
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HADI for diameter estimation 
•  Radius Plots for Mining Tera-byte Scale 

Graphs U Kang, Charalampos Tsourakakis, 
Ana Paula Appel, Christos Faloutsos, Jure 
Leskovec, SDM’10 

•  Naively: diameter needs O(N**2) space and 
up to O(N**3) time – prohibitive (N~1B) 

•  Our HADI: linear on E (~10B) 
– Near-linear scalability wrt # machines 
– Several optimizations -> 5x faster 

C. Faloutsos (CMU) 27 WIN'11 
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???? 

19+ [Barabasi+] 

28 C. Faloutsos (CMU) 

Radius 

Count 

WIN'11 

~1999, ~1M nodes 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+ [Barabasi+] 
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Radius 

Count 

WIN'11 

?? 

~1999, ~1M nodes 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+? [Barabasi+] 

30 C. Faloutsos (CMU) 

Radius 

Count 

WIN'11 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
• 7 degrees of separation (!) 
• Diameter: shrunk 

???? 

19+? [Barabasi+] 

31 C. Faloutsos (CMU) 

Radius 

Count 

WIN'11 

14 (dir.) 
~7 (undir.) 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
Q: Shape? 

???? 

32 C. Faloutsos (CMU) 

Radius 

Count 

WIN'11 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality (?!) 

WIN'11 
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Radius Plot of GCC of YahooWeb. 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

WIN'11 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

WIN'11 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

WIN'11 

~7 

Conjecture: 
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Running time -  Kronecker and Erdos-Renyi  
Graphs with billions edges. 

details 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

–  overview 
– Triangles 
– Diameter 
–  `Eigenspokes’ 
– Phonecall duration 

•  Problem#2: Tools 
•  Conclusions 
WIN'11 
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EigenSpokes 
B. Aditya Prakash, Mukund Seshadri, Ashwin 

Sridharan, Sridhar Machiraju and Christos 
Faloutsos: EigenSpokes: Surprising 
Patterns and Scalable Community Chipping 
in Large Graphs, PAKDD 2010, 
Hyderabad, India, 21-24 June 2010. 

C. Faloutsos (CMU) 40 WIN'11 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 
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(symmetric, undirected graph) 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 
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N 

N 

details 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 

C. Faloutsos (CMU) 46 

u1 

u2 

WIN'11 

1st Principal  
component 

2nd Principal  
component 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 
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u1 

u2 
90o 
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EigenSpokes - pervasiveness 
• Present in mobile social graph 

 across time and space 

• Patent citation graph 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

So what? 
 Extract nodes with high 

scores  
  high connectivity 
 Good “communities” 

spy plot of top 20 nodes 
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Bipartite Communities! 

magnified bipartite community 

patents from 
same inventor(s) 

`cut-and-paste’ 
bibliography! 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

–  overview 
– Triangles 
– Diameter 
–  `Eigenspokes’ 
– Phonecall duration 

•  Problem#2: Tools 
•  Conclusions 
WIN'11 
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Real Graph Patterns 
unweighted weighted    static 

P01. Power-law degree distribution [Faloutsos et. al.`99, 
Kleinberg et. al.`99, Chakrabarti et. al. `04, Newman`04] 
P02. Triangle Power Law [Tsourakakis `08] 
P03. Eigenvalue Power Law [Siganos et. al. `03] 
P04. Community structure [Flake et. al.`02, Girvan and 
Newman `02] 
P05. Clique Power Laws [Du et. al. ‘09]  

P12. Snapshot Power Law 
[McGlohon et. al. `08] 

 dynam
ic

 

P06. Densification Power Law [Leskovec et. al.`05] 
P07. Small and shrinking diameter [Albert and Barabási               
`99, Leskovec et. al. ‘05, McGlohon et. al. ‘08] 
P08. Gelling point [McGlohon et. al. `08]  
P09. Constant size 2nd and 3rd connected components 
[McGlohon et. al. `08]  
P10. Principal Eigenvalue Power Law [Akoglu et. al. `08] 
P11. Bursty/self-similar edge/weight additions [Gomez and 
Santonja `98, Gribble et. al. `98, Crovella and Bestavros `99, 
McGlohon et .al. `08] 

P13. Weight Power Law    
[McGlohon et. al. `08] 
P14. Skewed call duration 
distributions [Vaz de Melo et. 
al. `10] 

55 WIN'11 C. Faloutsos (CMU) RTG: A Recursive Realistic Graph Generator using Random Typing         
Leman Akoglu and Christos Faloutsos. ECML PKDD’09.  
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Duration of phonecalls 
Surprising Patterns for the Call 

Duration Distribution of Mobile 
Phone Users 

Pedro O. S. Vaz de Melo, Leman 
Akoglu, Christos Faloutsos, Antonio 
A. F. Loureiro 

PKDD 2010 
WIN'11 C. Faloutsos (CMU) 56 
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Probably, power law (?) 

WIN'11 C. Faloutsos (CMU) 57 

?? 
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No Power Law!? 
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‘TLaC: Lazy Contractor’ 
•  The longer a task (phonecall) has taken, 
•  The even longer it will take 

WIN'11 C. Faloutsos (CMU) 59 

Odds ratio= 

Casualties(<x): 
Survivors(>=x) 

== power law 
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Data Description 

  Data from a private mobile operator of a large 
city 
  4 months of data 
  3.1 million users 
  more than 1 billion phone records 

  Over 96% of ‘talkative’ users obeyed a TLAC 
distribution (‘talkative’: >30 calls) 

WIN'11 C. Faloutsos (CMU) 
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Outliers: 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– … 
–  `Eigenspokes’ 
– Phonecall duration 
– Connected components 

•  Problem#2: Tools 
•  Conclusions 

WIN'11 
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Generalized Iterated Matrix 

Vector Multiplication (GIMV) 

C. Faloutsos (CMU) 63 

PEGASUS: A Peta-Scale Graph Mining  
System - Implementation and Observations.  
U Kang, Charalampos E. Tsourakakis,  
and Christos Faloutsos.  
(ICDM) 2009, Miami, Florida, USA.  
Best Application Paper (runner-up).  

WIN'11 



CMU SCS 

64 

Example: GIM-V At Work 
•  Connected Components – 4 observations: 

Size 

Count 

C. Faloutsos (CMU) WIN'11 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) WIN'11 

1) 10K x  
larger 
than next 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) WIN'11 

2) ~0.7B  
singleton 
 nodes 



CMU SCS 

67 

Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

C. Faloutsos (CMU) WIN'11 

3) SLOPE! 



CMU SCS 

68 

Example: GIM-V At Work 
•  Connected Components 

Size 

Count 
300-size 

cmpt 
X 500. 
Why? 1100-size cmpt 

X 65. 
Why? 

C. Faloutsos (CMU) WIN'11 

4) Spikes! 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

suspicious 
financial-advice sites 

(not existing now) 

C. Faloutsos (CMU) WIN'11 
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GIM-V At Work 
•  Connected Components over Time 
•  LinkedIn: 7.5M nodes and 58M edges 

Stable tail slope 
after the gelling point 

C. Faloutsos (CMU) WIN'11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

–  Immunization 
– BP 
–  visualization 

•  Conclusions 

WIN'11 
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Immunization and epidemic 

thresholds 
•  Q1: which nodes to immunize? 
•  Q2: will a virus vanish, or will it create an 

epidemic? 

WIN'11 C. Faloutsos (CMU) 72 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 

WIN'11 73 C. Faloutsos (CMU) 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 

 A: immunize the ones that 
     maximally raise 
     the `epidemic threshold’ 
     [Tong+, ICDM’10]     

WIN'11 76 C. Faloutsos (CMU) 
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Q2: will a virus take over? 
•  Flu-like virus (no immunity, ‘SIS’) 
•  Mumps (life-time immunity, ‘SIR’) 
•  Pertussis (finite-length immunity, ‘SIRS’) 

WIN'11 C. Faloutsos (CMU) 77 

β: attack prob 
δ: heal prob 
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Q2: will a virus take over? 
•  Flu-like virus (no immunity, ‘SIS’) 
•  Mumps (life-time immunity, ‘SIR’) 
•  Pertussis (finite-length immunity, ‘SIRS’) 

WIN'11 C. Faloutsos (CMU) 78 

β: attack prob 
δ: heal prob 

Α: depends on connectivity 
    (avg degree? Something else?) 
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Epidemic threshold τ	



What should τ depend on? 
•  avg. degree? and/or highest degree?  
•  and/or variance of degree? 
•  and/or third moment of degree? 
•  and/or diameter? 
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Epidemic threshold - SIS 

•  [Theorem] We have no epidemic, if  

β/δ <τ = 1/ λ1,A 
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Epidemic threshold - SIS 

•  [Theorem] We have no epidemic, if  

β/δ <τ = 1/ λ1,A 

largest eigenvalue 
of adj. matrix A 

attack prob. 

recovery prob. 
epidemic threshold 

Proof: [Wang+03]  (for SIS=flu only) 
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Epidemic threshold - SIS 

•  [Theorem] We have no epidemic, if  

β/δ <τ = 1/ λ1,A 

Proof: [Wang+03]  (for SIS=flu only) 

What about other V.P.M.?  
(SIR, SIRS, etc?) 
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Theorem: 
•  For all typical virus propagation models (flu, 

mumps, pertussis, HIV, etc) 
•  The only connectivity measure that matters, is 

      1/λ1  
the first eigenvalue of the 
 adj. matrix 
[Prakash+, ‘10, arxiv] 

WIN'11 C. Faloutsos (CMU) 83 



CMU SCS 

84 C. Faloutsos (CMU) WIN'11 

Thresholds for some models 

•  s = effective strength 
•  s < 1 : below threshold 

Models Effective Strength 
(s) 

Threshold (tipping 
point) 

SIS, SIR, SIRS, 
SEIR s = λ .    

                s = 1  
SIV, SEIV s = λ .    

                   (H.I.V.) s = λ .    
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A2: will a virus take over? 

WIN'11 C. Faloutsos (CMU) 85 

Fraction of 
infected 

Time ticks 

Below: exp. extinction 

Above: take-over 

Graph: 
Portland, OR 
31M links 
1.5M nodes 



CMU SCS 

Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 

 A: immunize the ones that 
     maximally raise 
     the `epidemic threshold’ 
     [Tong+, ICDM’10]     
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Q1: Immunization: 
• Given  

• a network,  
• k vaccines, and  
• the virus details 

• Which nodes to immunize? 

 A: immunize the ones that 
     maximally raise 
     the `epidemic threshold’ 
     [Tong+, ICDM’10]     
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Max eigen-drop Δλ	


For any virus! 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

–  Immunization 
– BP 
–  visualization 

•  Conclusions 

WIN'11 
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E-bay Fraud detection 

w/ Polo Chau & 
Shashank Pandit, CMU 
[www’07] 
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E-bay Fraud detection 
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E-bay Fraud detection 
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E-bay Fraud detection - NetProbe 



CMU SCS 

Popular press 

And less desirable attention: 
•  E-mail from ‘Belgium police’ (‘copy of 

your code?’) 
WIN'11 C. Faloutsos (CMU) 93 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

–  Immunization 
– BP - theory 
–  visualization 

•  Conclusions 
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Guilt-by-Association Techniques 

Given:  
•  graph and 
•  few labeled nodes 

Find: class (red/green) 
          for rest nodes 
Assuming: network 
          effects (homophily/ 
            heterophily) 

WIN'11 95 C. Faloutsos (CMU) 
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Correspondence	
  of	
  Methods 

Random Walk with Restarts (RWR)   Google  
Semi-supervised Learning (SSL)  
Belief Propagation (BP)                       Bayesian 
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Correspondence	
  of	
  Methods 

Random Walk with Restarts (RWR) ≈ 
Semi-supervised Learning (SSL) ≈ 
Belief Propagation (BP) 

Method Matrix unknown known 
RWR [I  –    c    AD-1]	

 ×	

 x	

 =	

 (1-c)y	


SSL [I  + a(D  -   A)] 	

 ×	

 x	

 =	

 y	



FABP [I  + a D  - c’A] 	

 ×	

 bh	

 =	

 φh	



0  1  0 
1  0  1 
0  1  0 

 ? 
 0 
 1 
 1 

WIN'11 97 C. Faloutsos (CMU) 
Unifying Guilt-by-Association Approaches: Theorems 
and Fast Algorithms. Danai Koutra, et al PKDD’11 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

–  Immunization 
– BP 
–  visualization 

•  Conclusions 
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Apolo	
  
Making	
  Sense	
  of	
  Large	
  Network	
  Data:	
  
Combining	
  Rich	
  User	
  Interac<on	
  &	
  Machine	
  Learning	
  
CHI 2011, Vancouver, Canada 

Polo	
  Chau	
   Prof.	
  Niki	
  KiCur	
   Prof.	
  Jason	
  Hong	
   Prof.	
  Christos	
  Faloutsos	
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Exemplars	
  
Rest	
  of	
  the	
  nodes	
  are	
  considered	
  relevant	
  (by	
  
BP);	
  relevance	
  indicated	
  by	
  color	
  satura<on.	
  
Note	
  that	
  BP	
  supports	
  mul<ple	
  groups	
   WIN'11 100 C. Faloutsos (CMU) 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

–  Immunization 
– BP 
–  visualization 

•  Conclusions 
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OVERALL CONCLUSIONS – 
low level: 

•  Several new patterns (eigenspokes, radius 
plot etc) 

•  New tools and theoretical results 
–  belief propagation (~ RWR ~ SSL ) 

–  Immunization: Δ λ, for ‘any’ V.P.M.	
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OVERALL CONCLUSIONS – 
high level 

•  BIG DATA: -> patterns/outliers that are 
invisible otherwise 
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OVERALL CONCLUSIONS – 
high level 

•  BIG DATA: -> patterns/outliers that are 
invisible otherwise 
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