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OVERVIEW - high level: 
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Features 

Anomalies 

Patterns 

= rare roles 
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Resource: 

Open source system for mining huge graphs: 

PEGASUS project (PEta GrAph mining 
System)  

•  www.cs.cmu.edu/~pegasus 
•  code and papers 

SDM'12 Tutorial 
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Roadmap 

•  Patterns in graphs 
–  overview 
– Static graphs 
– Weighted graphs 
– Time-evolving graphs 

•  Anomaly Detection 
•  Application: ebay fraud 
•  Conclusions 

SDM'12 Tutorial 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

Friendship Network 
[Moody ’01] 

SDM'12 Tutorial 
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Graphs - why should we care? 
•  IR: bi-partite graphs (doc-terms) 

•  web: hyper-text graph 

•  ... and more: 

D1 

DN 

T1 

TM 

... ... 

SDM'12 Tutorial 
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Graphs - why should we care? 
•  ‘viral’ marketing 
•  web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic 

and anomaly detection 
•  .... 

SDM'12 Tutorial 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

SDM'12 Tutorial 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

–  Large datasets reveal patterns/anomalies 
that may be invisible otherwise… 

SDM'12 Tutorial 
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Graph mining 
•  Are real graphs random? 

SDM'12 Tutorial 



T. Eliassi-Rad & C. Faloutsos 12 

Laws and patterns 
•  Are real graphs random? 
•  A: NO!! 

– Diameter 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  So, let’s look at the data 

SDM'12 Tutorial 



Real Graph Patterns 
unweighted weighted    static 

P01. Power-law degree distribution [Faloutsos et. al.`99, 
Kleinberg et. al.`99, Chakrabarti et. al. `04, Newman`04] 
P02. Triangle Power Law [Tsourakakis `08] 
P03. Eigenvalue Power Law [Siganos et. al. `03] 
P04. Community structure [Flake et. al.`02, Girvan and 
Newman `02] 
P05. Clique Power Laws [Du et. al. ‘09]  

P12. Snapshot Power Law 
[McGlohon et. al. `08] 

 dynam
ic

 

P06. Densification Power Law [Leskovec et. al.`05] 
P07. Small and shrinking diameter [Albert and Barabási               
`99, Leskovec et. al. ‘05, McGlohon et. al. ‘08] 
P08. Gelling point [McGlohon et. al. `08]  
P09. Constant size 2nd and 3rd connected components 
[McGlohon et. al. `08]  
P10. Principal Eigenvalue Power Law [Akoglu et. al. `08] 
P11. Bursty/self-similar edge/weight additions [Gomez and 
Santonja `98, Gribble et. al. `98, Crovella and Bestavros `99, 
McGlohon et .al. `08] 

P13. Weight Power Law    
[McGlohon et. al. `08] 
P14. Skewed call duration 
distributions [Vaz de Melo et. 
al. `10] 

13 SDM'12 Tutorial T. Eliassi-Rad & C. Faloutsos RTG: A Recursive Realistic Graph Generator using Random Typing         
Leman Akoglu and Christos Faloutsos. ECML PKDD’09.  
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Roadmap 

•  Patterns in graphs 
–  overview 
– Static graphs 
– Weighted graphs 
– Time-evolving graphs 

•  Anomaly Detection 
•  Application: ebay fraud 
•  Conclusions 

SDM'12 Tutorial 
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Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

internet domains 

att.com 

ibm.com 

SDM'12 Tutorial 
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Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

SDM'12 Tutorial 
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Solution# S.2: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency 
matrix 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

SDM'12 Tutorial 
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Solution# S.2: Eigen Exponent E 

•  [Mihail, Papadimitriou ’02]: slope is ½ of rank 
exponent 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

SDM'12 Tutorial 
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But: 
How about graphs from other domains? 

SDM'12 Tutorial 
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More power laws: 
•  web hit counts [w/ A. Montgomery] 

Web Site Traffic 

in-degree (log scale) 

Count 
(log scale) 

Zipf 

users 
sites 

``ebay’’ 

SDM'12 Tutorial 
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epinions.com 
•  who-trusts-whom 

[Richardson + 
Domingos, KDD 
2001] 

(out) degree 

count 

trusts-2000-people user 

SDM'12 Tutorial 



And numerous more 
•  # of sexual contacts 
•  Income [Pareto] –’80-20 distribution’ 
•  Duration of downloads [Bestavros+] 
•  Duration of UNIX jobs (‘mice and 

elephants’) 
•  Size of files of a user 
•  … 
•  ‘Black swans’ 
SDM'12 Tutorial T. Eliassi-Rad & C. Faloutsos 22 
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Roadmap 

•  Patterns in graphs 
–  overview 
– Static graphs 

•  S1: Degree, S2: eigenvalues 
•  S3-4: Triangles, S5: cliques 
•  Radius plot 
•  Other observations (‘eigenSpokes’) 

– Weighted graphs 
– Time-evolving graphs 

SDM'12 Tutorial 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles  

SDM'12 Tutorial 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles 
–  Friends of friends are friends  

•  Any patterns? 

SDM'12 Tutorial 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions X-axis: # of  participating 
triangles 
Y: count (~ pdf) 

SDM'12 Tutorial 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions 

SDM'12 Tutorial 

X-axis: # of  participating 
triangles 
Y: count (~ pdf) 
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Triangle Law: #S.4  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

SDM'12 Tutorial 



T. Eliassi-Rad & C. Faloutsos 29 

Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 

details 

SDM'12 Tutorial 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 
A: Yes! 

 #triangles = 1/6 Sum ( λi
3 ) 

      (and, because of skewness (S2) ,  
 we only need the top few eigenvalues! 

details 

SDM'12 Tutorial 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

1000x+ speed-up, >90% accuracy 

details 

SDM'12 Tutorial 



Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 
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Triangle counting for large graphs? 

Q: How to compute # triangles in B-node 
graph? (O(dmax ** 2) )? 
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Triangle counting for large graphs? 

Q: How to compute # triangles in B-node 
graph? (O(dmax ** 2) )? A: cubes of eigvals 

38 SDM'12 Tutorial 38 T. Eliassi-Rad & C. Faloutsos 
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Roadmap 

•  Patterns in graphs 
–  overview 
– Static graphs 

•  S1: Degree, S2: eigenvalues 
•  S3-4: Triangles, S5: cliques 
•  Radius plot 
•  Other observations (‘eigenSpokes’) 

– Weighted graphs 
– Time-evolving graphs 

SDM'12 Tutorial 



How about cliques? 

SDM'12 Tutorial T. Eliassi-Rad & C. Faloutsos 40 



Large Human Communication Networks 
Patterns and a Utility-Driven Generator 

Nan Du,  Christos Faloutsos,  Bai Wang, Leman Akoglu 
KDD 2009 
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Cliques 
•  Clique is a complete subgraph. 
•  If a clique can not be  

contained by any larger 
clique, it is called the  
maximal clique. 

2 0 

1 3 

4 
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Clique 
•  Clique is a complete subgraph. 
•  If a clique can not be  

contained by any larger 
clique, it is called the  
maximal clique. 
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1 3 
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Clique 
•  Clique is a complete subgraph. 
•  If a clique can not be  

contained by any larger 
clique, it is called the  
maximal clique. 

•  {0,1,2}, {0,1,3}, {1,2,3} 
{2,3,4}, {0,1,2,3} are cliques; 

•  {0,1,2,3} and {2,3,4} are  
the maximal cliques. 

2 0 

1 3 

4 
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S5: Clique-Degree Power-Law 
•  Power law: 

More friends, even more  
social circles ! 

# maximal 
cliques of node i 

degree 
of node i 
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S5: Clique-Degree Power-Law 
•  Outlier Detection 
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S5: Clique-Degree Power-Law 
•  Outlier Detection 
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Roadmap 

•  Patterns in graphs 
–  overview 
– Static graphs 

•  S1: Degree, S2: eigenvalues 
•  S3-4: Triangles, S5: cliques 
•  Radius plot 
•  Other observations (‘eigenSpokes’) 

– Weighted graphs 
– Time-evolving graphs 

SDM'12 Tutorial 



HADI for diameter estimation 
•  Radius Plots for Mining Tera-byte Scale 

Graphs U Kang, Charalampos Tsourakakis, 
Ana Paula Appel, Christos Faloutsos, Jure 
Leskovec, SDM’10 

•  Naively: diameter needs O(N**2) space and 
up to O(N**3) time – prohibitive (N~1B) 

•  Our HADI: linear on E (~10B) 
– Near-linear scalability wrt # machines 
– Several optimizations -> 5x faster 
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???? 

19+ [Barabasi+] 
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Radius 

Count 
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~1999, ~1M nodes 



YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+ [Barabasi+] 

52 T. Eliassi-Rad & C. Faloutsos 

Radius 

Count 
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?? 

~1999, ~1M nodes 



YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  Largest publicly available graph ever studied. 

???? 

19+? [Barabasi+] 
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Radius 

Count 
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14 (dir.) 
~7 (undir.) 



YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
• 7 degrees of separation (!) 
• Diameter: shrunk 

???? 

19+? [Barabasi+] 
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Radius 

Count 
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14 (dir.) 
~7 (undir.) 



YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
Q: Shape? 

???? 
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Radius 

Count 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality (?!) 

SDM'12 Tutorial 



Radius Plot of GCC of YahooWeb. 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

SDM'12 Tutorial 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

SDM'12 Tutorial 

EN 
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Conjecture: 
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YahooWeb graph  (120Gb, 1.4B nodes, 6.6 B edges) 
•  effective diameter: surprisingly small. 
•  Multi-modality: probably mixture of cores . 

SDM'12 Tutorial 

~7 

Conjecture: 
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Roadmap 

•  Patterns in graphs 
–  overview 
– Static graphs 

•  S1: Degree, S2: eigenvalues 
•  S3-4: Triangles, S5: cliques 
•  Radius plot 
•  Other observations (‘eigenSpokes’) 

– Weighted graphs 
– Time-evolving graphs 
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S6: EigenSpokes 
B. Aditya Prakash, Mukund Seshadri, Ashwin 

Sridharan, Sridhar Machiraju and Christos 
Faloutsos: EigenSpokes: Surprising 
Patterns and Scalable Community Chipping 
in Large Graphs, PAKDD 2010, 
Hyderabad, India, 21-24 June 2010. 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 
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details 



EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 
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u1 

u2 

SDM'12 Tutorial 

1st Principal  
component 

2nd Principal  
component 



EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 
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u1 

u2 
90o 
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EigenSpokes - pervasiveness 
• Present in mobile social graph 

 across time and space 

• Patent citation graph 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

So what? 
 Extract nodes with high 

scores  
  high connectivity 
 Good “communities” 

spy plot of top 20 nodes 
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Bipartite Communities! 

magnified bipartite community 

patents from 
same inventor(s) 

`cut-and-paste’ 
bibliography! 
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Roadmap 

•  Patterns in graphs 
–  overview 
– Static graphs 
– Weighted graphs 
– Time-evolving graphs 

•  Anomaly Detection 
•  Application: ebay fraud 
•  Conclusions 

SDM'12 Tutorial 
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Observations on  weighted 
graphs? 

•  A: yes - even more ‘laws’! 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  

SDM'12 Tutorial 
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Observation W.1: Fortification 
Q: How do the weights  
of nodes relate to degree? 

SDM'12 Tutorial 
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Observation W.1: Fortification 

More donors,  
more $ ? 

$10 

$5 

SDM'12 Tutorial 

‘Reagan’ 

‘Clinton’ 
$7 



Edges (# donors) 

In-weights 
($) 
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Observation W.1: fortification: 
Snapshot Power Law 

•  Weight: super-linear on in-degree  
•  exponent ‘iw’: 1.01 < iw < 1.26 

Orgs-Candidates 

e.g. John Kerry,  
$10M received, 
from 1K donors 

More donors,  
even more $ 

$10 

$5 

SDM'12 Tutorial 
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Roadmap 

•  Patterns in graphs 
–  overview 
– Static graphs 
– Weighted graphs 
– Time-evolving graphs 

•  Anomaly Detection 
•  Application: ebay fraud 
•  Conclusions 

SDM'12 Tutorial 
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Problem: Time evolution 
•  with Jure Leskovec (CMU -> 

Stanford) 

•   and Jon Kleinberg (Cornell – 
sabb. @ CMU) 

SDM'12 Tutorial 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 

SDM'12 Tutorial 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 
•  Diameter shrinks over time 

SDM'12 Tutorial 
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T.1 Diameter – “Patents” 

•  Patent citation 
network 

•  25 years of data 
•  @1999 

–  2.9 M nodes 
–  16.5 M edges 

time [years] 

diameter 

SDM'12 Tutorial 



T. Eliassi-Rad & C. Faloutsos 86 

T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 

SDM'12 Tutorial 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 
•  A: over-doubled! 

– But obeying the ``Densification Power Law’’ 
SDM'12 Tutorial 
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T.2 Densification – Patent 
Citations 

•  Citations among 
patents granted 

•  @1999 
–  2.9 M nodes 
–  16.5 M edges 

•  Each year is a 
datapoint 

N(t) 

E(t) 

1.66 

SDM'12 Tutorial 
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Roadmap 

•  Patterns in graphs 
– … 
– Time-evolving graphs 

•  T1: shrinking diameter;  
•  T2: densification 
•  T3: connected components 
•  T4: popularity over time 
•  T5: phonecall patterns 

•  … 

SDM'12 Tutorial 
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More on Time-evolving graphs 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

SDM'12 Tutorial 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 
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Observation T.3: NLCC behavior 
•  After the gelling point, the GCC takes off, but 

NLCC’s remain ~constant (actually, oscillate). 

IMDB 

CC size 

Time-stamp 
SDM'12 Tutorial 
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(Computation – scalability?) 
•  Q: How to handle billion node graphs? 
•  A: hadoop + ‘Pegasus’ 

– Most operations -> matrix-vector multiplications 
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Generalized Iterated Matrix 
Vector Multiplication (GIMV) 
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PEGASUS: A Peta-Scale Graph Mining  
System - Implementation and Observations.  
U Kang, Charalampos E. Tsourakakis,  
and Christos Faloutsos.  
(ICDM) 2009, Miami, Florida, USA.  
Best Application Paper (runner-up).  
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Generalized Iterated Matrix 
Vector Multiplication (GIMV) 
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•  PageRank 
•  proximity (RWR) 
•  Diameter 
•  Connected components 
•  (eigenvectors,  
•   Belief Prop.  
•   … ) 

Matrix – vector 
Multiplication 

(iterated) 

SDM'12 Tutorial 

details 
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Example: GIM-V At Work 
•  Connected Components – 4 observations: 

Size 

Count 

T. Eliassi-Rad & C. Faloutsos SDM'12 Tutorial 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

T. Eliassi-Rad & C. Faloutsos SDM'12 Tutorial 

1) 10K x  
larger 
than next 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

T. Eliassi-Rad & C. Faloutsos SDM'12 Tutorial 

2) ~0.7B  
singleton 
 nodes 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

T. Eliassi-Rad & C. Faloutsos SDM'12 Tutorial 

3) SLOPE! 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 
300-size 

cmpt 
X 500. 
Why? 1100-size cmpt 

X 65. 
Why? 

T. Eliassi-Rad & C. Faloutsos SDM'12 Tutorial 

4) Spikes! 
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Example: GIM-V At Work 
•  Connected Components 

Size 

Count 

suspicious 
financial-advice sites 

(not existing now) 

T. Eliassi-Rad & C. Faloutsos SDM'12 Tutorial 
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GIM-V At Work 
•  Connected Components over Time 
•  LinkedIn: 7.5M nodes and 58M edges 

Stable tail slope 
after the gelling point 

T. Eliassi-Rad & C. Faloutsos SDM'12 Tutorial 
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Roadmap 

•  Patterns in graphs 
– … 
– Time-evolving graphs 

•  T1: shrinking diameter;  
•  T2: densification 
•  T3: connected components 
•  T4: popularity over time 
•  T5: phonecall patterns 

•  … 

SDM'12 Tutorial 
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Timing for Blogs 

•  with Mary McGlohon (CMU->Google) 
•  Jure Leskovec (CMU->Stanford) 
•  Natalie Glance (now at Google) 
•  Mat Hurst (now at MSR) 
[SDM’07] 

SDM'12 Tutorial 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 

lag: days after post 

# in links 

1 2 3 

@t 

@t + lag 

SDM'12 Tutorial 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? 

# in links 
(log) 

days after post 
(log) 

SDM'12 Tutorial 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? -1.6  
•  close to -1.5: Barabasi’s stack model 
•  and like the zero-crossings of a random walk 

# in links 
(log) -1.6 

days after post 
(log) 

SDM'12 Tutorial 
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-1.5 slope 
J. G. Oliveira & A.-L. Barabási Human Dynamics: The 

Correspondence Patterns of Darwin and Einstein. 
Nature 437, 1251 (2005) . [PDF]  

Log # days to respond 

Log 
Prob() -1.5 
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Roadmap 

•  Patterns in graphs 
– … 
– Time-evolving graphs 

•  T1: shrinking diameter;  
•  T2: densification 
•  T3: connected components 
•  T4: popularity over time 
•  T5: phonecall patterns 

•  … 
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T.5: duration of phonecalls 
Surprising Patterns for the Call 

Duration Distribution of Mobile 
Phone Users 

Pedro O. S. Vaz de Melo, Leman 
Akoglu, Christos Faloutsos, Antonio 
A. F. Loureiro 

PKDD 2010 
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Probably, power law (?) 
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?? 



No Power Law! 
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‘TLaC: Lazy Contractor’ 
•  The longer a task (phonecall) has taken, 
•  The even longer it will take 

SDM'12 Tutorial T. Eliassi-Rad & C. Faloutsos 115 

Odds ratio= 

Casualties(<x): 
Survivors(>=x) 

== power law 
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Data Description 

  Data from a private mobile operator of a large 
city 
  4 months of data 
  3.1 million users 
  more than 1 billion phone records 

  Over 96% of ‘talkative’ users obeyed a TLAC 
distribution (‘talkative’: >30 calls) 
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Outliers: 
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Real Graph Patterns 
unweighted weighted    static 

P01. Power-law degree distribution [Faloutsos et. al.`99, 
Kleinberg et. al.`99, Chakrabarti et. al. `04, Newman`04] 
P02. Triangle Power Law [Tsourakakis `08] 
P03. Eigenvalue Power Law [Siganos et. al. `03] 
P04. Community structure [Flake et. al.`02, Girvan and 
Newman `02] 
P05. Clique Power Laws [Du et. al. ‘09]  

P12. Snapshot Power Law 
[McGlohon et. al. `08] 

 dynam
ic

 

P06. Densification Power Law [Leskovec et. al.`05] 
P07. Small and shrinking diameter [Albert and Barabási               
`99, Leskovec et. al. ‘05, McGlohon et. al. ‘08] 
P08. Gelling point [McGlohon et. al. `08]  
P09. Constant size 2nd and 3rd connected components 
[McGlohon et. al. `08]  
P10. Principal Eigenvalue Power Law [Akoglu et. al. `08] 
P11. Bursty/self-similar edge/weight additions [Gomez and 
Santonja `98, Gribble et. al. `98, Crovella and Bestavros `99, 
McGlohon et .al. `08] 

P13. Weight Power Law    
[McGlohon et. al. `08] 
P14. Skewed call duration 
distributions [Vaz de Melo et. 
al. `10] 

118 SDM'12 Tutorial T. Eliassi-Rad & C. Faloutsos RTG: A Recursive Realistic Graph Generator using Random Typing         
Leman Akoglu and Christos Faloutsos. ECML PKDD’09.  

✓ 
✓ 
✓ 

✓ 
✓ 

✓ 
✓ 

✓ 

✓ 
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Roadmap 

•  Patterns in graphs 
–  overview 
– Static graphs 
– Weighted graphs 
– Time-evolving graphs 

•  Anomaly Detection 
•  Application: ebay fraud 
•  Conclusions 
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OddBall: Spotting Anomalies 
in  Weighted Graphs 

Leman Akoglu, Mary McGlohon, Christos 
Faloutsos 

Carnegie Mellon University  
School of Computer Science 

PAKDD 2010, Hyderabad, India 



Main idea 
For each node,  
•  extract ‘ego-net’ (=1-step-away neighbors) 
•  Extract features (#edges, total weight, etc 

etc) 
•  Compare with the rest of the population 
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What is an egonet? 

ego 

122 

egonet 
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Selected Features 
  Ni: number of neighbors (degree) of ego i 
  Ei: number of edges in egonet i 
  Wi: total weight of egonet i 
  λw,i: principal eigenvalue of the weighted 

adjacency matrix of egonet I 
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Near-Clique/Star 
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Near-Clique/Star 
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Near-Clique/Star 
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Andrew Lewis  
(director) 

Near-Clique/Star 
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Dominant Heavy Link 
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Roadmap 

•  Patterns in graphs 
–  overview 
– Static graphs 
– Weighted graphs 
– Time-evolving graphs 

•  Anomaly Detection 
•  Application: ebay fraud 
•  Conclusions 
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NetProbe: The Problem 
Find bad sellers (fraudsters) on eBay 
who don’t deliver their (expensive) 
items 

130 SDM'12 Tutorial T. Eliassi-Rad & C. Faloutsos 

$$$ 

X 
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E-bay Fraud detection 

w/ Polo Chau & 
Shashank Pandit, CMU 
[www’07] 
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E-bay Fraud detection 
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E-bay Fraud detection 
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E-bay Fraud detection - NetProbe 



NetProbe: Key Ideas 
•  Fraudsters fabricate their reputation by 

“trading” with their accomplices 
•  Transactions form near bipartite cores 
•  How to detect them? 
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NetProbe: Key Ideas 
Use ‘Belief Propagation’ and ~heterophily  

136 

F A H 
Fraudster 

Accomplice 
Honest 

Darker means 
more likely 
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NetProbe: Main Results 
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Roadmap 

•  Patterns in graphs 
•  Anomaly Detection 
•  Application: ebay fraud 

– How-to: Belief Propagation 
•  Conclusions 
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Guilt-by-Association Techniques 

Given:  
•  graph and 
•  few labeled nodes 

Find: class (red/green) 
          for rest nodes 
Assuming: network 
          effects (homophily/ 
            heterophily, etc) 

SDM'12 Tutorial 139 T. Eliassi-Rad & C. Faloutsos 

details 

red 
green 

F 

H 
A 



Correspondence	  of	  Methods 

Random Walk with Restarts (RWR)   Google  
Semi-supervised Learning (SSL)  
Belief Propagation (BP)                       Bayesian 

SDM'12 Tutorial 140 T. Eliassi-Rad & C. Faloutsos 

details 



Correspondence	  of	  Methods 

Random Walk with Restarts (RWR) ≈ 
Semi-supervised Learning (SSL) ≈ 
Belief Propagation (BP) 

Method Matrix unknown known 
RWR [I  –    c    AD-1]	
 ×	
 x	
 =	
 (1-c)y	

SSL [I  + a(D  -   A)] 	
 ×	
 x	
 =	
 y	


FABP [I  + a D  - c’A] 	
 ×	
 bh	
 =	
 φh	


0  1  0 
1  0  1 
0  1  0 

 ? 
 0 
 1 
 1 

SDM'12 Tutorial 141 T. Eliassi-Rad & C. Faloutsos 
Unifying Guilt-by-Association Approaches: Theorems 
and Fast Algorithms. Danai Koutra, et al PKDD’11 

details 
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Roadmap 

•  Patterns in graphs 
•  Anomaly Detection 
•  Application: ebay fraud 
•  Conclusions 
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Overall conclusions 
•  Roles:  

– Past work in social networks (‘regular’, 
‘structural’ etc) 

– Scalable algo’s to find such roles 

•  Anomalies & patterns 
– Static (power-laws, ‘six degrees’) 
– Weighted (super-linearity) 
– Time-evolving (densification, -1.5 exponent) 
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OVERALL CONCLUSIONS – 
high level: 

SDM'12 Tutorial 

Roles 

Features 

Anomalies 

Patterns 

= rare roles 
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OVERALL CONCLUSIONS – 
high level 

•  BIG DATA: -> roles/patterns/outliers that 
are invisible otherwise 

SDM'12 Tutorial 
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