Mining Billion-Scale Graphs: Patterns and Algorithms

Christos Faloutsos and UKang CMU Part 1: Patterns

Complementary to tutorial: *Mining Billion-Scale Graphs: Systems and Implementations*: Haixun Wang et al

Part 1: Patterns and tools

SIGMOD'12

Faloutsos and Kang (CMU)

2

Our goal:

Open source system for mining huge graphs:

PEGASUS project (PEta GrAph mining System)

• www.cs.cmu.edu/~pegasus

• code and papers

Outline

- Introduction Motivation
 - Problem#1: Patterns in graphs
 - Problem#2: Tools
 - Problem#3: Algorithms and Scalability
 - Conclusions

Graphs - why should we care?

Internet Map [cheswick.com]

facebook.

twitter

Friendship Network [fmsag.com]

Food Web [biologycorner.com]

Protein Interactions [bordalierinstitute.com]

Graphs - why should we care?

• IR: bi-partite graphs (doc-terms)

• web: hyper-text graph

• ... and more:

SIGMOD'12

Faloutsos and Kang (CMU)

6

Graphs - why should we care?

- network of companies & board-of-directors members
- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
 - Problem#2: Tools
 - Problem#3: Algorithms and Scalability
 - Conclusions

Problem #1 - network and graph mining

- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?

Problem #1 - network and graph mining

• How does the Internet look like?

- How does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?
 - To spot anomalies (rarities), we have to discover patterns

SIGMOD'12

Problem #1 - network and graph mining

SIGMOD'12

- How does the Internet look like?
- How does FaceBook look like?
- What is 'normal'/'abnormal'?
- which patterns/laws hold?
 - To spot anomalies (rarities), we have to discover patterns
 - Large datasets reveal patterns/anomalies that may be invisible otherwise...

Graph mining

• Are real graphs random?

Laws and patterns

- Are real graphs random?
- A: NO!!
 - Diameter
 - in- and out- degree distributions
 - other (surprising) patterns
- So, let's look at the data

Solution# S.1

• Power law in the degree distribution [SIGCOMM99]

internet domains

Solution# S.1

• Power law in the degree distribution [SIGCOMM99]

internet domains

Solution# S.2: Eigen Exponent E

Rank of decreasing eigenvalue

• A2: power law in the eigenvalues of the adjacency matrix

SIGMOD'12

Solution# S.2: Eigen Exponent E

SIGMOD'12

But:

How about graphs from other domains?

SIGMOD'12

More power laws:

• web hit counts [w/ A. Montgomery]

0

epinions.com

(out) degree

And numerous more

- # of sexual contacts
- Income [Pareto] –'80-20 distribution'
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs ('mice and elephants')
- Size of files of a user
- •
- 'Black swans'

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - degree, diameter, eigen,
 - triangles
 - cliques
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Tools

Solution# S.3: Triangle 'Laws'

• Real social networks have a lot of triangles

Solution# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles

 Friends of friends are friends
- Any patterns?

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

Triangle Law: #S.4 [Tsourakakis ICDM 2008]

X-axis: degree Y-axis: mean # triangles *n* friends -> $\sim n^{1.6}$ triangles

27

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos) Q: Can we do that quickly?

SIGMOD'12

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos)
Q: Can we do that quickly?
A: Yes!

#triangles = 1/6 Sum (λ_i^3) (and, because of skewness (S2), we only need the top few eigenvalues!)

Triangle for Anomaly Detection Triangle counting in Twitter social network

• U.S. politicians: moderate number of triangles vs. degree

Triangle for Anomaly Detection Triangle counting in Twitter social network

- U.S. politicians: moderate number of triangles vs. degree
 - Adult sites: very large number of triangles vs. degree

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - degree, diameter, eigen,
 - triangles
 - cliques
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Tools

Observations on weighted graphs?

• A: yes - even more 'laws'!

M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

SIGMOD'12

Observation W.1: Fortification

Q: How do the weights of nodes relate to degree?

Observation W.1: Fortification

Observation W.1: fortification: Snapshot Power Law

- Weight: super-linear on in-degree
- exponent 'iw': 1.01 < iw < 1.26

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Tools

Problem: Time evolution

 with Jure Leskovec (CMU -> Stanford)

and Jon Kleinberg (Cornell – sabb. @ CMU)

T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at **slowly growing diameter**:
 - diameter $\sim O(\log N)$
 - diameter $\sim O(\log \log N)$

• What is happening in real data?

T.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:

 - $\text{ diameter} \sim (\ln n)$ $\text{ diameter} \sim O(\log n)$
- What is happening in real data?
- Diameter shrinks over time

T.1 Diameter – "Patents"

- Patent citation network
- 25 years of data
- @1999
 - 2.9 M nodes
 - 16.5 M edges

Faloutsos and Kang (CMU)

T.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

N(t+1) = 2 * N(t)

• Q: what is your guess for E(t+1) =? 2 * E(t)

T.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

N(t+1) = 2 * N(t)

- Q: what is your guess for E(t+1) * E(t)
- A: over-doubled!

– But obeying the ``Densification Power Law''

SIGMOD'12

T.2 Densification – Patent Citations

- Citations among patents granted
- @1999
 - 2.9 M nodes
 - 16.5 M edges
- Each year is a datapoint

Faloutsos and Kang (CMU)

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
- Problem#2: Tools

More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

SIGMOD'12

Observation T.3: NLCC behavior

- *Q: How do NLCC's emerge and join with the GCC?*
- (``NLCC'' = non-largest conn. components)
- -Do they continue to grow in size?
- or do they shrink?
- or stabilize?

Observation T.3: NLCC behavior

- *Q: How do NLCC's emerge and join with the GCC?*
- (``NLCC'' = non-largest conn. components)
- -Do they continue to grow in size?
- or do they shrink?
- or stabilize?

Observation T.3: NLCC behavior

• After the gelling point, the GCC takes off, but NLCC's remain ~constant (actually, oscillate).

SIGMOD'12

Timing for Blogs

- with Mary McGlohon (CMU->google)
- Jure Leskovec (CMU->Stanford)
- Natalie Glance (now at Google)
- Mat Hurst (now at MSR)
 [SDM'07]

T.4 : popularity over time

T.4 : popularity over time

Post popularity drops-off – exporent ally? POWER LAW! Exponent? -1.6

- close to -1.5: Barabasi's stack model
- and like the zero-crossings of a random walk SIGMOD'12 Faloutsos and Kang (CMU)

50£

54

T.5: duration of phonecalls

Surprising Patterns for the Call Duration Distribution of Mobile Phone Users

Pedro O. S. Vaz de Melo, LemanAkoglu, Christos Faloutsos, AntonioA. F. LoureiroPKDD 2010

Probably, power law (?)

No Power Law!

'TLaC: Lazy Contractor'

- The longer a task (phonecall) has taken,
- The even longer it will take

Data Description

- Data from a private mobile operator of a large city
 - 4 months of data
 - 3.1 million users
 - more than 1 billion phone records

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
 - Oddball
 - SVD
 - Problem#3: Algorithms and Scalability
 - Conclusions

OddBall: Spotting Anomalies in Weighted Graphs

Leman Akoglu, Mary McGlohon, Christos Faloutsos

> Carnegie Mellon University School of Computer Science

PAKDD 2010, Hyderabad, India

Main idea

For each node,

- extract 'ego-net' (=1-step-away neighbors)
- Extract features (#edges, total weight, etc etc)
- Compare with the rest of the population

What is an egonet?

Carnegie Mellon

Selected Features

- N_i : number of neighbors (degree) of ego i
- E_i : number of edges in egonet i
- W_i : total weight of egonet *i*
- $\lambda_{w,i}$: principal eigenvalue of the weighted adjacency matrix of egonet *I*

SIGMOD'12

Carnegie Mellon

Near-Clique/Star

Near-Clique/Star

Faloutsos and Kang (CMU)

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
 - Oddball
 - SVD
- Problem#3: Algorithms and Scalability
- Conclusions

Singular Value Decomposition

- Powerful tool, identical or closely related to
 - Latent Semantic Indexing (LSI)
 - Karhunen-Loeve Transform (KLT)
 - Principal Component Analysis (PCA)

. . .

Motivation

• Who-calls-whom (~1M) – how to visualize/ understand?

SVD - Motivation

Faloutsos and Kang (CMU)

P1-71

SIGMOD'12

SVD - Motivation

SVD - Motivation

SVD - Definition

$$\mathbf{A}_{[\mathbf{n} \mathbf{x} \mathbf{m}]} = \mathbf{U}_{[\mathbf{n} \mathbf{x} \mathbf{r}]} \mathbf{A}_{[\mathbf{r} \mathbf{x} \mathbf{r}]} (\mathbf{V}_{[\mathbf{m} \mathbf{x} \mathbf{r}]})^{\mathrm{T}}$$

- A: n x m matrix (eg., n customers, m products)
- U: n x r matrix (n customers, r concepts)
- Λ: r x r diagonal matrix (strength of each 'concept') (r : rank of the matrix)
- V: m x r matrix (m products, r concepts)

SVD - Definition

• $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

A U Λ V^T

SVD - Properties

THEOREM [Press+92]: always possible to decompose matrix A into $A = U \Lambda V^T$, where

- **U**, **Λ**, **V**: unique (*)
- U, V: column orthonormal (ie., columns are unit vectors, orthogonal to each other)

- $\mathbf{U}^{\mathrm{T}} \mathbf{U} = \mathbf{I}; \mathbf{V}^{\mathrm{T}} \mathbf{V} = \mathbf{I}$ (**I**: identity matrix)

• Λ: singular are positive, and sorted in decreasing order

• $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

SIGMOD'12

• $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example:

• $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ - example: tom. chick. lett. strength bread beet of concept 0.18 0 0.36 0 9.64)0 0.18 0 Χ Х 5.29 0.90 0 0 0.53 0 $\begin{bmatrix} 0.58 & 0.58 & 0.58 & 0 \\ 0 & 0 & 0 & 0.71 \end{bmatrix}$ 0.80 1 0.27 0 0.71 \checkmark

SIGMOD'12

SVD - Motivation

B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju and Christos
Faloutsos: *EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs*, PAKDD 2010, Hyderabad, India, 21-24 June 2010.

Motivation

• Who-calls-whom (~1M) – how to visualize/ understand?

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

$$A = U\Sigma U^T$$

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

2nd Principal

- EE plot:
- Scatter plot of scores of u1 vs u2
- One would expect
 - Many points @ origin
 - A few scattered
 ~randomly

u1 1st Principal component

- EE plot:
- Scatter plot of scores of u1 vs u2
- One would expect
 - Many points @ origin

u1

SIGMOD'12

EigenSpokes - pervasiveness

- Present in mobile social graph
 - across time and space

Near-cliques, or nearbipartite-cores, loosely connected

SIGMOD'12

Near-cliques, or nearbipartite-cores, loosely connected

Near-cliques, or nearbipartite-cores, loosely connected

Near-cliques, or nearbipartite-cores, loosely connected

So what?

- Extract nodes with high scores
- high connectivity
- Good "communities"

96

SIGMOD'12

Bipartite Communities!

SIGMOD'12

Outline

- Introduction Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
 - Oddball
 - SVD
- Problem#3: Algorithms and Scalability
 - Conclusions

www.cs.cmu.edu/~pegasus

QUESTIONS ?

SIGMOD'12

Faloutsos and Kang (CMU)

99