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Part 1: 
Patterns and tools 
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Our goal: 

Open source system for mining huge graphs: 

PEGASUS project (PEta GrAph mining 
System)  

•  www.cs.cmu.edu/~pegasus 
•  code and papers 

SIGMOD'12 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Algorithms and Scalability 
•  Conclusions 

SIGMOD'12 
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Graphs - why should we care? 

SIGMOD'12 

… 

Internet Map 
[cheswick.com] 

Food Web 
[biologycorner.com] 

Protein Interactions 
[bordalierinstitute.com] 

Friendship Network 
[fmsag.com] 
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Graphs - why should we care? 
•  IR: bi-partite graphs (doc-terms) 

•  web: hyper-text graph 

•  ... and more: 

D1 

DN 

T1 

TM 

... ... 

SIGMOD'12 
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Graphs - why should we care? 
•  network of companies & board-of-directors 

members 
•  ‘viral’ marketing 
•  web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic 

and anomaly detection 
•  .... 

SIGMOD'12 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs 
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  Problem#3: Algorithms and Scalability 
•  Conclusions 

SIGMOD'12 



CMU SCS 

Faloutsos and Kang (CMU) 9 

Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

SIGMOD'12 
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Problem #1 - network and graph 
mining 

•  How does the Internet look like? 
•  How does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

SIGMOD'12 
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Problem #1 - network and graph 
mining 

•  How does the Internet look like? 
•  How does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

–  Large datasets reveal patterns/anomalies 
that may be invisible otherwise… 

SIGMOD'12 
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Graph mining 
•  Are real graphs random? 

SIGMOD'12 
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Laws and patterns 
•  Are real graphs random? 
•  A: NO!! 

– Diameter 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  So, let’s look at the data 

SIGMOD'12 
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Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

internet domains 

att.com 

ibm.com 

SIGMOD'12 
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Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 
internet domains 

log(rank) 

log(degree) 

-0.82 

att.com 

ibm.com 

SIGMOD'12 
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Solution# S.2: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency 
matrix 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

SIGMOD'12 
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Solution# S.2: Eigen Exponent E 

•  [Mihail, Papadimitriou ’02]: slope is ½ of rank 
exponent 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

SIGMOD'12 
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But: 
How about graphs from other domains? 

SIGMOD'12 
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More power laws: 
•  web hit counts [w/ A. Montgomery] 

Web Site Traffic 

in-degree (log scale) 

Count 
(log scale) 

Zipf 

users 
sites 

``ebay’’ 

SIGMOD'12 
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epinions.com 
•  who-trusts-whom 

[Richardson + 
Domingos, KDD 
2001] 

(out) degree 

count 

trusts-2000-people user 

SIGMOD'12 
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And numerous more 
•  # of sexual contacts 
•  Income [Pareto] –’80-20 distribution’ 
•  Duration of downloads [Bestavros+] 
•  Duration of UNIX jobs (‘mice and 

elephants’) 
•  Size of files of a user 
•  … 
•  ‘Black swans’ 
SIGMOD'12 Faloutsos and Kang (CMU) 21 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  triangles 
•  cliques 

– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
SIGMOD'12 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles  

SIGMOD'12 



CMU SCS 

Faloutsos and Kang (CMU) 24 

Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles 
–  Friends of friends are friends  

•  Any patterns? 

SIGMOD'12 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions X-axis: # of  participating 
triangles 
Y: count (~ pdf) 

SIGMOD'12 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

ASN HEP-TH 

Epinions 

SIGMOD'12 

X-axis: # of  participating 
triangles 
Y: count (~ pdf) 
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Triangle Law: #S.4  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

SIGMOD'12 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 

details 

SIGMOD'12 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) 

Q: Can we do that quickly? 
A: Yes! 

 #triangles = 1/6 Sum ( λi
3 ) 

      (and, because of skewness (S2) ,  
 we only need the top few eigenvalues!) 

details 

SIGMOD'12 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

1000x+ speed-up, >90% accuracy 

details 

SIGMOD'12 



[Twitter 2009;  
~ 60 million nodes 
~ 3 billion edges] 

•  U.S. politicians: moderate number of triangles vs. degree 

  Triangle counting in Twitter social network 
Triangle for Anomaly Detection 



  Triangle counting in Twitter social network 

[Twitter 2009;  
~ 60 million nodes 
~ 3 billion edges] 

•  U.S. politicians: moderate number of triangles vs. degree 
•  Adult sites: very large number of triangles vs. degree 

Triangle for Anomaly Detection 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  triangles 
•  cliques 

– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
SIGMOD'12 
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Observations on  weighted 
graphs? 

•  A: yes - even more ‘laws’! 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  

SIGMOD'12 
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Observation W.1: Fortification 
Q: How do the weights  
of nodes relate to degree? 

SIGMOD'12 
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Observation W.1: Fortification 

More donors,  
more $ ? 

$10 

$5 

SIGMOD'12 

‘Reagan’ 

‘Clinton’ 
$7 
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Edges (# donors) 

In-weights 
($) 
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Observation W.1: fortification: 
Snapshot Power Law 

•  Weight: super-linear on in-degree  
•  exponent ‘iw’: 1.01 < iw < 1.26 

Orgs-Candidates 

e.g. John Kerry,  
$10M received, 
from 1K donors 

More donors,  
even more $ 

$10 

$5 

SIGMOD'12 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  … 

SIGMOD'12 
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Problem: Time evolution 
•  with Jure Leskovec (CMU -> 

Stanford) 

•   and Jon Kleinberg (Cornell – 
sabb. @ CMU) 

SIGMOD'12 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 

SIGMOD'12 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 
•  Diameter shrinks over time 

SIGMOD'12 
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T.1 Diameter – “Patents” 

•  Patent citation 
network 

•  25 years of data 
•  @1999 

–  2.9 M nodes 
–  16.5 M edges 

time [years] 

diameter 

SIGMOD'12 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 

SIGMOD'12 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 
•  A: over-doubled! 

– But obeying the ``Densification Power Law’’ 
SIGMOD'12 
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T.2 Densification – Patent 
Citations 

•  Citations among 
patents granted 

•  @1999 
–  2.9 M nodes 
–  16.5 M edges 

•  Each year is a 
datapoint 

N(t) 

E(t) 

1.66 

SIGMOD'12 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  … 

SIGMOD'12 
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More on Time-evolving graphs 

M. McGlohon, L. Akoglu, and C. Faloutsos  
Weighted Graphs and Disconnected 
Components: Patterns and a Generator.  
SIG-KDD 2008  

SIGMOD'12 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

SIGMOD'12 
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Observation T.3: NLCC behavior 
Q: How do NLCC’s emerge and join with 

the GCC? 

(``NLCC’’ = non-largest conn. components) 
– Do they continue to grow in size? 
–  or do they shrink? 
–  or stabilize? 

SIGMOD'12 
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Observation T.3: NLCC behavior 
•  After the gelling point, the GCC takes off, but 

NLCC’s remain ~constant (actually, oscillate). 

IMDB 

CC size 

Time-stamp 
SIGMOD'12 
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Timing for Blogs 

•  with Mary McGlohon (CMU->google) 
•  Jure Leskovec (CMU->Stanford) 
•  Natalie Glance (now at Google) 
•  Mat Hurst (now at MSR) 
[SDM’07] 

SIGMOD'12 



CMU SCS 

Faloutsos and Kang (CMU) 52 

T.4 : popularity over time 

Post popularity drops-off – exponentially? 

lag: days after post 

# in links 

1 2 3 

@t 

@t + lag 

SIGMOD'12 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? 

# in links 
(log) 

1 2 3 days after post 
(log) 

SIGMOD'12 
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T.4 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? -1.6  
•  close to -1.5: Barabasi’s stack model 
•  and like the zero-crossings of a random walk 

# in links 
(log) 

1 2 3 

-1.6 

days after post 
(log) 

SIGMOD'12 
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-1.5 slope 
J. G. Oliveira & A.-L. Barabási Human Dynamics: The 

Correspondence Patterns of Darwin and Einstein. 
Nature 437, 1251 (2005) . [PDF]  

Log 
count 

Log lag 

-1.5 
Log 

count 

Log lag 

-1.5 

Darwin Einstein 
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T.5: duration of phonecalls 
Surprising Patterns for the Call 

Duration Distribution of Mobile 
Phone Users 

Pedro O. S. Vaz de Melo, Leman 
Akoglu, Christos Faloutsos, Antonio 
A. F. Loureiro 

PKDD 2010 
SIGMOD'12 Faloutsos and Kang (CMU) 56 
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Probably, power law (?) 

SIGMOD'12 Faloutsos and Kang (CMU) 57 

?? 
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No Power Law! 

SIGMOD'12 Faloutsos and Kang (CMU) 58 
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‘TLaC: Lazy Contractor’ 
•  The longer a task (phonecall) has taken, 
•  The even longer it will take 

SIGMOD'12 Faloutsos and Kang (CMU) 59 

Odds ratio= 

Casualties(<x): 
Survivors(>=x) 

== power law 
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60 

Data Description 

  Data from a private mobile operator of a large 
city 
  4 months of data 
  3.1 million users 
  more than 1 billion phone records 

SIGMOD'12 Faloutsos and Kang (CMU) 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– Oddball 
– SVD 

•  Problem#3: Algorithms and Scalability 
•  Conclusions 

SIGMOD'12 
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OddBall: Spotting Anomalies 
in  Weighted Graphs 

Leman Akoglu, Mary McGlohon, Christos 
Faloutsos 

Carnegie Mellon University  
School of Computer Science 

PAKDD 2010, Hyderabad, India 
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Main idea 
For each node,  
•  extract ‘ego-net’ (=1-step-away neighbors) 
•  Extract features (#edges, total weight, etc 

etc) 
•  Compare with the rest of the population 

Faloutsos and Kang (CMU) 63 SIGMOD'12 
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What is an egonet? 

ego 

64 

egonet 

Faloutsos and Kang (CMU) SIGMOD'12 
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Selected Features 
  Ni: number of neighbors (degree) of ego i 
  Ei: number of edges in egonet i 
  Wi: total weight of egonet i 
  λw,i: principal eigenvalue of the weighted 

adjacency matrix of egonet I 

65 Faloutsos and Kang (CMU) SIGMOD'12 



CMU SCS 
Near-Clique/Star 

66 SIGMOD'12 Faloutsos and Kang (CMU) 
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Near-Clique/Star 

67 Faloutsos and Kang (CMU) SIGMOD'12 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– Oddball 
– SVD 

•  Problem#3: Algorithms and Scalability 
•  Conclusions 

SIGMOD'12 
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Singular Value Decomposition	

•  Powerful tool, identical or closely related to 

– Latent Semantic Indexing (LSI) 
– Karhunen-Loeve Transform (KLT) 
– Principal Component Analysis (PCA) 
– … 

SIGMOD'12 Faloutsos and Kang (CMU) 69 
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Motivation 
• Who-calls-whom (~1M) – how to visualize/

understand? 

70 Faloutsos and Kang (CMU) SIGMOD'12 

1M 

1M 
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SVD - Motivation 

•  Customer-product, for recommendation 
system: 

vegetarians 

meat eaters 

Row 1 

Row 4 
Col 1 
Col 3 
Col 4 Row 5 

Row 7 
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SVD - Motivation 

Bread 

Lettuce 
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SVD - Motivation 

Bread 

Lettuce 
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SVD - Definition 

A[n x m] = U[n x r] Λ [ r x r] (V[m x r])T 

•  A: n x m matrix (eg., n customers, m products) 
•   U: n x r matrix (n customers, r concepts) 
•   Λ: r x r diagonal matrix (strength of each 

‘concept’) (r : rank of the matrix) 
•   V: m x r matrix (m products, r concepts) 

details 
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SVD - Definition 

•  A = U Λ VT - example: 

Row 1 

Row 4 
Col 1 
Col 3 
Col 4 Row 5 

Row 7 

A           U         Λ        VT 
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SVD - Properties 

THEOREM [Press+92]: always possible to 
decompose matrix A into A = U Λ VT , where 

•  U, Λ, V: unique (*) 
•  U, V: column orthonormal (ie., columns are unit 

vectors, orthogonal to each other) 
–  UT U = I; VT V = I (I: identity matrix) 

•   Λ: singular are positive, and sorted in decreasing 
order 

details 
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SVD - Example 

•  A = U Λ VT - example: 

bread 
lett. 

tom. 
beef 

chick. 

= 
Veg. 

Carn. 

x x 



CMU SCS 

SIGMOD'12 Faloutsos and Kang (CMU) 78 

SVD - Example 

•  A = U Λ VT - example: 

bread 
lett. 

tom. 
beef 

chick. 

= 
Veg. 

Carn. 

x x 

Customer-to- 
Concept matrix 
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SVD - Example 

•  A = U Λ VT - example: 

bread 
lett. 

tom. 
beef 

chick. 

= 
Veg. 

Carn. 

x x 

veg. concept 
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SVD - Example 

•  A = U Λ VT - example: 

bread 
lett. 

tom. 
beef 

chick. 

= 
Veg. 

Carn. 

x x 

carn. concept 
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SVD - Example 

•  A = U Λ VT - example: 

bread 
lett. 

tom. 
beef 

chick. 

= 
Veg. 

Carn. 

x x 

strength 
of concept 
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SVD - Example 

•  A = U Λ VT - example: 

bread 
lett. 

tom. 
beef 

chick. 

= 
Veg. 

Carn. 

x x 

prod.-to-concept 
similarity matrix 

v1 
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SVD - Motivation 

Bread 

Lettuce 

v1 
v1 
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EigenSpokes 
B. Aditya Prakash, Mukund Seshadri, Ashwin 

Sridharan, Sridhar Machiraju and Christos 
Faloutsos: EigenSpokes: Surprising 
Patterns and Scalable Community Chipping 
in Large Graphs, PAKDD 2010, 
Hyderabad, India, 21-24 June 2010. 

Faloutsos and Kang (CMU) 84 SIGMOD'12 
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Motivation 
• Who-calls-whom (~1M) – how to visualize/

understand? 

85 Faloutsos and Kang (CMU) SIGMOD'12 

1M 

1M 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

86 Faloutsos and Kang (CMU) SIGMOD'12 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

87 Faloutsos and Kang (CMU) SIGMOD'12 

N 

N 

details 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

88 Faloutsos and Kang (CMU) SIGMOD'12 

N 

N 

details 
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EigenSpokes 
• Eigenvectors of adjacency matrix  

  equivalent to singular vectors 
(symmetric, undirected graph) 

89 Faloutsos and Kang (CMU) SIGMOD'12 

N 

N 

details 

v1 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 

Faloutsos and Kang (CMU) 90 

u1 

u2 

SIGMOD'12 

1st Principal  
component 

2nd Principal  
component 
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EigenSpokes 
•  EE plot: 
•  Scatter plot of 

scores of u1 vs u2 
•  One would expect 

– Many points @ 
origin 

– A few scattered 
~randomly 

Faloutsos and Kang (CMU) 91 

u1 

u2 
90o 

SIGMOD'12 



CMU SCS 

EigenSpokes - pervasiveness 
• Present in mobile social graph 

 across time and space 

• Patent citation graph 

92 Faloutsos and Kang (CMU) SIGMOD'12 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

93 Faloutsos and Kang (CMU) SIGMOD'12 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

95 Faloutsos and Kang (CMU) SIGMOD'12 
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EigenSpokes - explanation 

Near-cliques, or near-
bipartite-cores, loosely 
connected 

So what? 
 Extract nodes with high 

scores  
  high connectivity 
 Good “communities” 

spy plot of top 20 nodes 

96 Faloutsos and Kang (CMU) SIGMOD'12 
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Bipartite Communities! 

magnified bipartite community 

patents from 
same inventor(s) 

cut-and-paste 
bibliography! 

97 Faloutsos and Kang (CMU) SIGMOD'12 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– Oddball 
– SVD 

•  Problem#3: Algorithms and Scalability 
•  Conclusions 

SIGMOD'12 
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QUESTIONS ? 

log(degree) 
att.com 

ibm.com 

www.cs.cmu.edu/~pegasus 


