Mining Billion-Scale Graphs: Patterns and Algorithms

Christos Faloutsos and U Kang CMU Part 2: Algorithms

Complementary to tutorial: *Mining Billion-Scale Graphs: Systems and Implementations*: Haixun Wang et al

Part 2: Algorithms

SIGMOD'12

Faloutsos and Kang (CMU)

2

Outline

- Problem#1: Patterns in graphs
- Problem#2: Tools
- Problem#3: Scalability PEGASUS
 - Structure Analysis
 - Eigensolver
 - Graph Layout and Compression
 - Conclusions

Our goal:

Open source system for mining huge graphs:

PEGASUS project (PEta GrAph mining System)

• www.cs.cmu.edu/~pegasus

• code and papers

Scalability Challenge

• The sizes of graphs are growing!

facebook.

0.5 billion users 60 TBytes/day 15 PBytes/total [Thusoo+ '10]

1.4 billion web pages6.6 billion edges[Broder+ '04]

ClickStream Data 0.26 PBytes 1 billion query-URL [Liu+ '09]

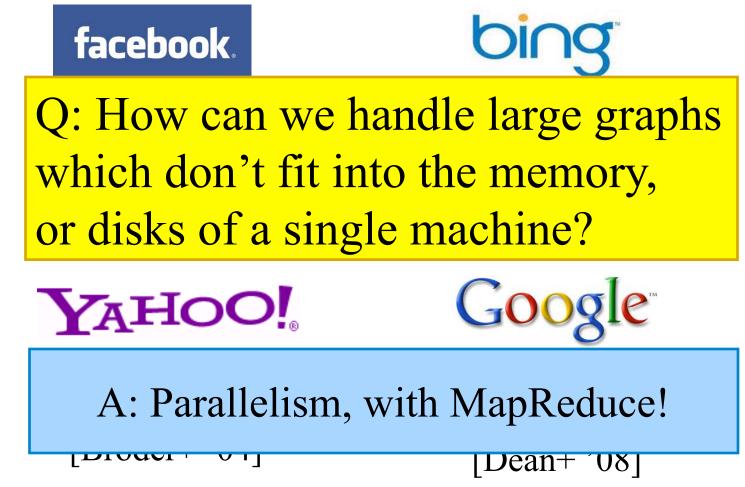
Google

20 PBytes/day

[Dean+ '08]

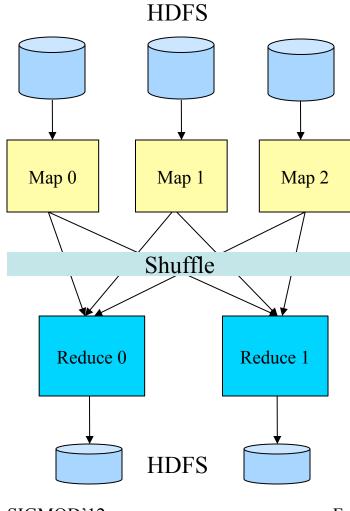
Scalability Challenge

• The sizes of graphs are growing!



Background: MapReduce

MapReduce/Hadoop Framework



HDFS: fault tolerant, scalable, distributed storage system

Mapper: read data from HDFS, output (k,v) pair

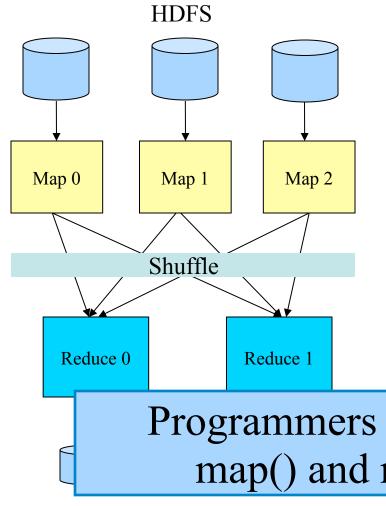
Output sorted by the key

Reducer: read output from mapp ers, output a new (k,v) pair to H DFS

SIGMOD'12

Background: MapReduce

MapReduce/Hadoop Framework



HDFS: fault tolerant, scalable, distributed storage system

Mapper: read data from HDFS, output (k,v) pair

Output sorted by the key

Reduce 1Reducer: read output from mappers output a new (k v) nair to HProgrammers need to provide onlymap() and reduce() functions

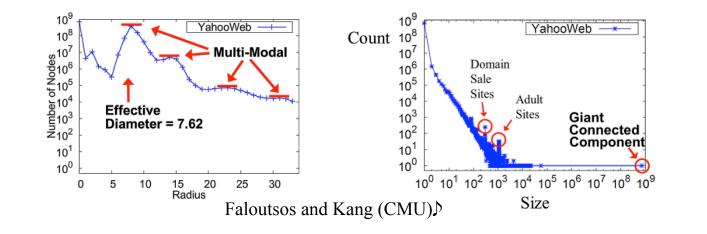
SIGMOD'12

Outline

- Problem#1: Patterns in graphs
- Problem#2: Tools
- Problem#3: Scalability PEGASUS
- Structure Analysis
 - Eigensolver
 - Graph Layout and Compression
 - Conclusions

Structure Analysis

- How to scale-up structure analysis algorithm?
 - Q1: How to unify many structure analysis algorith ms (connected components, PageRank, diameter/ra dius)?
 - Q2: How to design a scalable algorithm for the stru cture analysis?



Q1: Unifying Algorithms

- Given a graph, can we compute
 - connected components,
 - PageRank,
 - Random Walk with Restart,
 - diameter/radius with *one algorithm*?

Q1: Unifying Algorithms

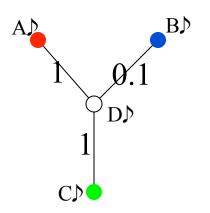
- Given a graph, can we compute
 - connected components,
 - PageRank,
 - Random Walk with Restart,
 - diameter/radius with *one algorithm*?

Yes! How?

• GIM-V

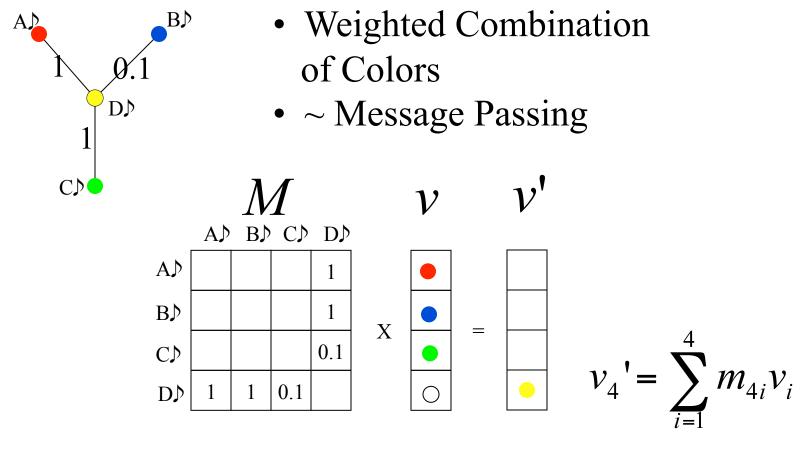
- □ Generalized Iterative Matrix-Vector Multiplication
- Extension of plain matrix-vector multiplication
- includes
 - Connected Components
 - PageRank
 - RWR (Random Walk With Restart)
 - Diameter Estimation

Plain M-V multiplication

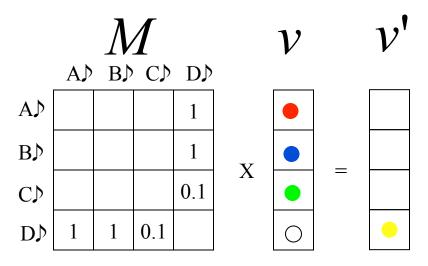


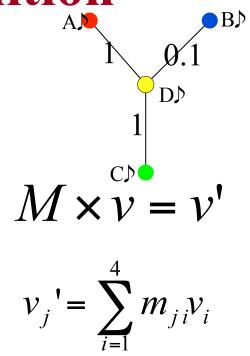
- Weighted Combination of Colors
- ~ Message Passing

Plain M-V multiplication

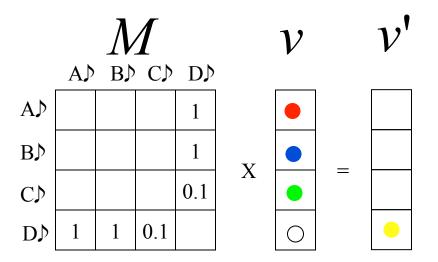


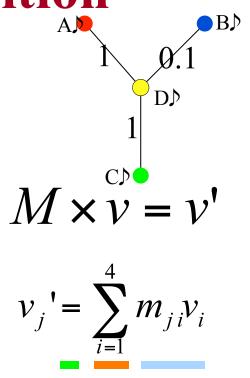
Plain M-V multiplication





Plain M-V multiplication





Three Implicit Operations here:

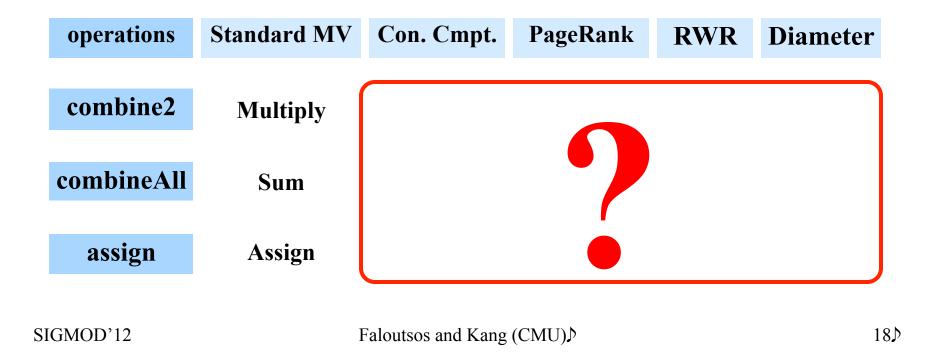
multiply m_{ji} and v_i sum n multiplication results update v_j'

SIGMOD'12

combine2Message sendingcombineAllMessage combinationassign

• GIM-V

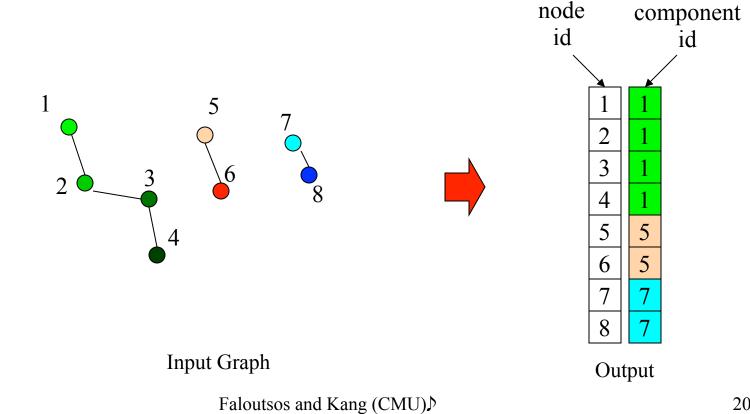
Generalizing the three operations leads to many algo rithms



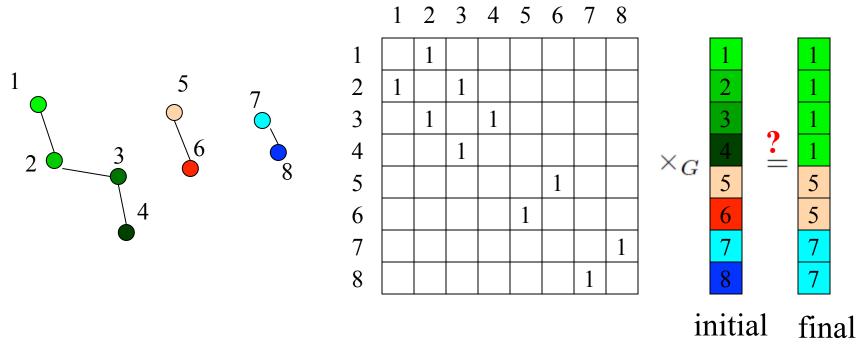
GIM-V for Connected Components

operations	Standard MV	Con. Cmpt.	PageRank	RWR	Diameter
combine2	Multiply	Bool. X			
combineAll	Sum	MIN			
assign	Assign	MIN			

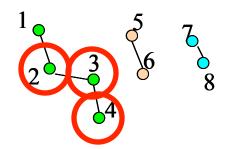
- GIM-V for Connected Components
 - How many connected components?
 - Which node belong to which component?



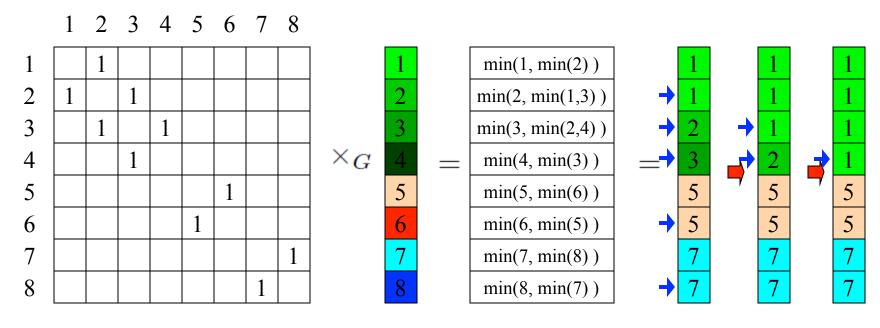
GIM-V for Connected Components



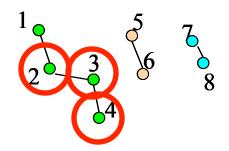
vector vector



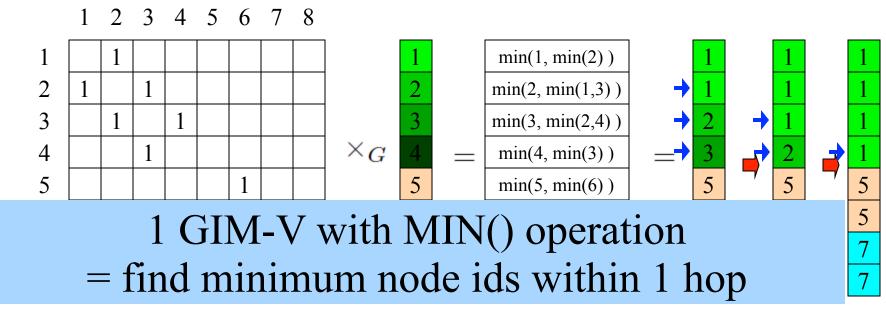
■ GIM-V for Connected Components $combine2(m_{i,j},v_j) = m_{i,j} \times v_j$ "Sending Invitations" $combineAll(x_1,...,x_n) = \min\{x_i | i = 1..n\}$ "Accept the Smallest" $assign(v_i, v_{new}) = \min(v_i, v_{new})$

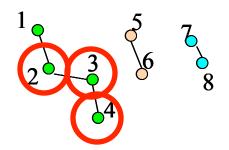


Faloutsos and Kang (CMU)♪

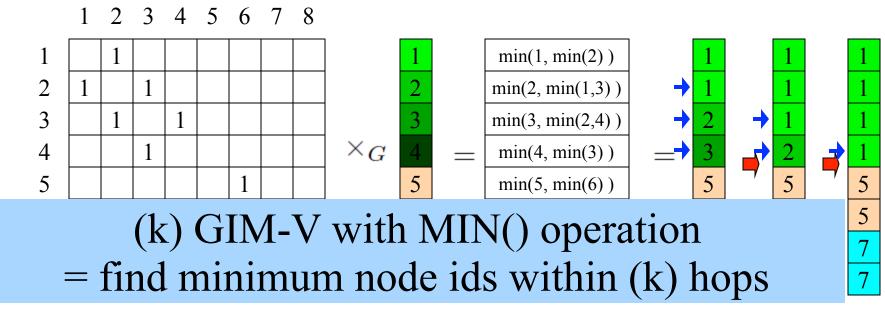


■ GIM-V for Connected Components $combine2(m_{i,j},v_j) = m_{i,j} \times v_j$ "Sending Invitations" $combineAll(x_1,...,x_n) = \min\{x_i | i = 1..n\}$ "Accept the Smallest" $assign(v_i, v_{new}) = \min(v_i, v_{new})$



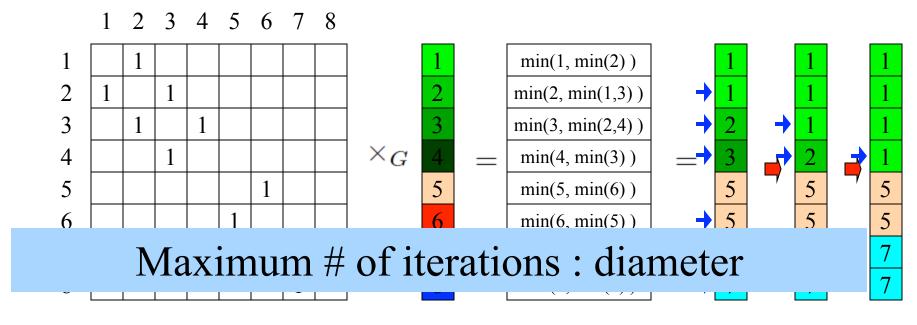


■ GIM-V for Connected Components $combine2(m_{i,j},v_j) = m_{i,j} \times v_j$ "Sending Invitations" $combineAll(x_1,...,x_n) = \min\{x_i | i = 1..n\}$ "Accept the Smallest" $assign(v_i, v_{new}) = \min(v_i, v_{new})$





■ GIM-V for Connected Components $combine2(m_{i,j},v_j) = m_{i,j} \times v_j$ "Sending Invitations" $combineAll(x_1,...,x_n) = \min\{x_i | i = 1..n\}$ "Accept the Smallest" $assign(v_i, v_{new}) = \min(v_i, v_{new})$



• GIM-V for PageRank

Operations	Standard MV	Con. Cmpt.	PageRank	RWR	Diameter
combine2	Multiply	Multiply	Multiply with c		
combineAll	Sum	MIN	Sum with rj prob		
assign	Assign	MIN	Assign		

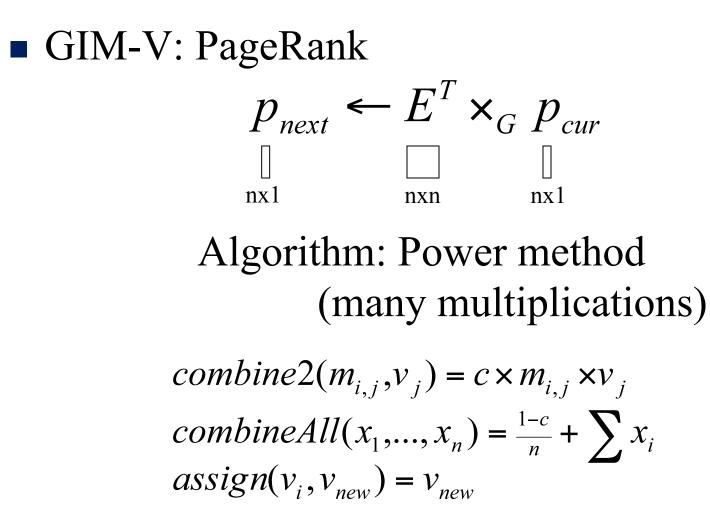
GIM-V: PageRank □ PageRank vector *p*: eigenvector of *A*: $1p = A \times p$ nx1 nx1 nxn ■ Where $A = cE^T + (1 - c)U$ All elements Adjacency Matrix set to 1/n

Faloutsos and Kang (CMU)♪

GIM-V: PageRank
 Algorithm: Power method

 (many multiplications)

 $p_{next} \leftarrow A \times p_{cur}$ nx1 nx1 nxn



Faloutsos and Kang (CMU)♪

• GIM-V

- 0111					(approx.)♪
Operations	Standard MV	Con. Cmpt.	PageRank	RWR	Diameter
combine2	Multiply	Multiply	Multiply	Multiply	Multiply b
			with c	with c	it-vector
combineAll	Sum	MIN	Sum with rj prob.	Sum with retart prob	es BIT-OR()
assign	Assign	MIN	Assign	Assign	BIT-OR()

Two Restrictions on HDFS

[R1] HDFS is location transparent

Users don't know which file is located in which ma chine

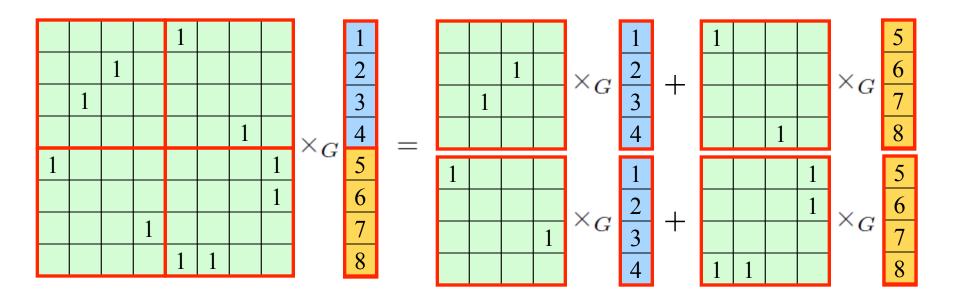
[R2] A line is never split

- A large file is split into pieces of a size(e.g. 256 M
 B)
- □ Users don't know the point of the split

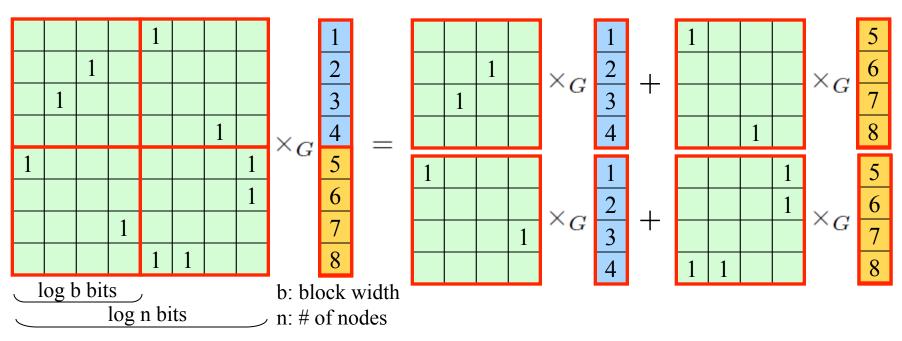
Q2: Fast Algorithms for GIM-V

- Given the two restrictions R1 and R2, how can we make faster algorithms for GIM-V in Hadoop?
 - □ Three main ideas:
 - I1) Block Multiplication
 - I2) Clustering
 - I3) Compression

I1) Block-Method



I1) Block-Method

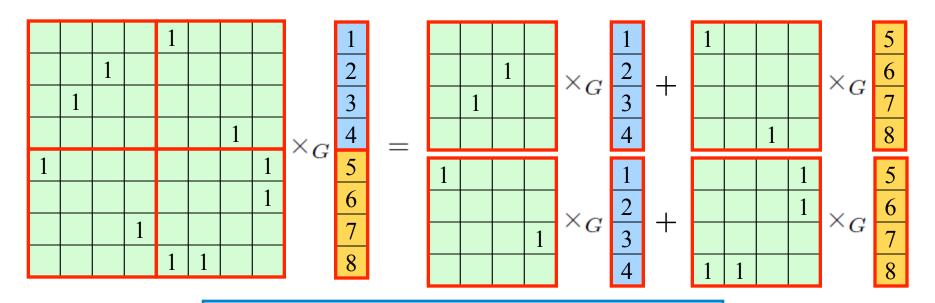


1. Group elements together into 1 line

2. Storage for an element: 2log n bits -> 2log b bits

3. Adjust the MapReduce code(block multiplication)

I1) Block-Method

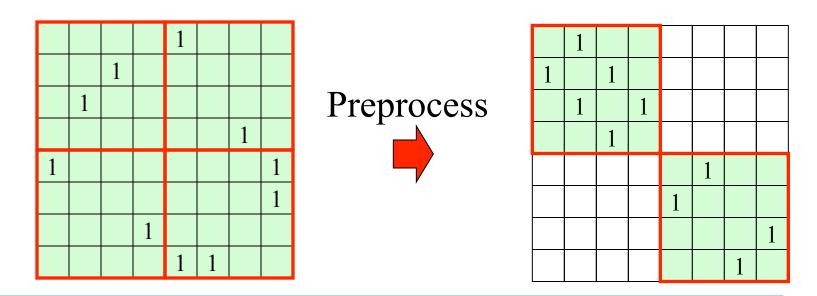


Thanks to the encoding,file size is decreased,shuffle time is decreased.

Q: Can we do even better?

Main Idea

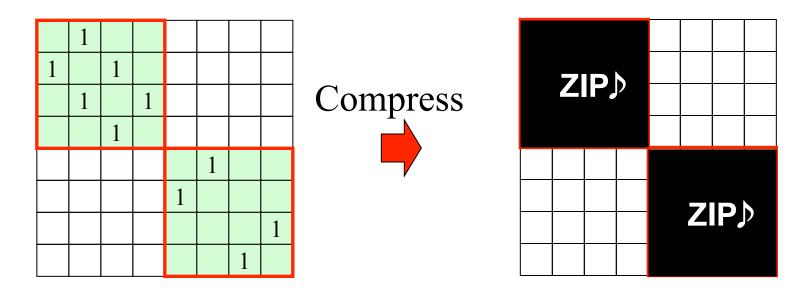
I2) Clustering



A: preprocessing for clustering (only green blocks are stored in HDFS)

Main Idea

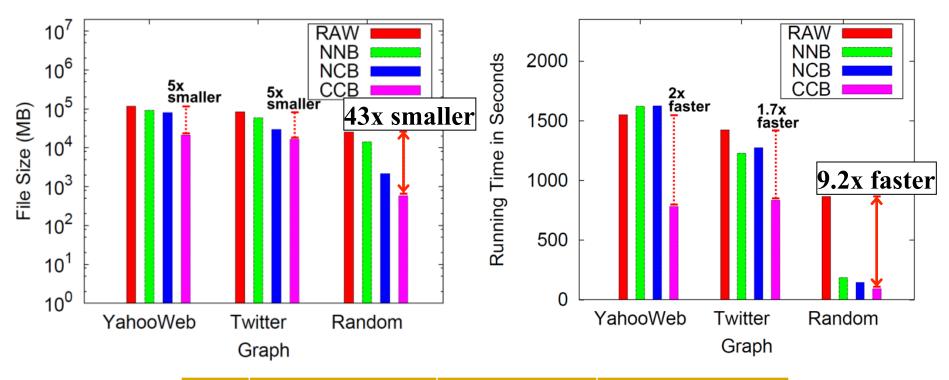
I3) Compression



A: compress clustered blocks

Carnegie Mellon

Result

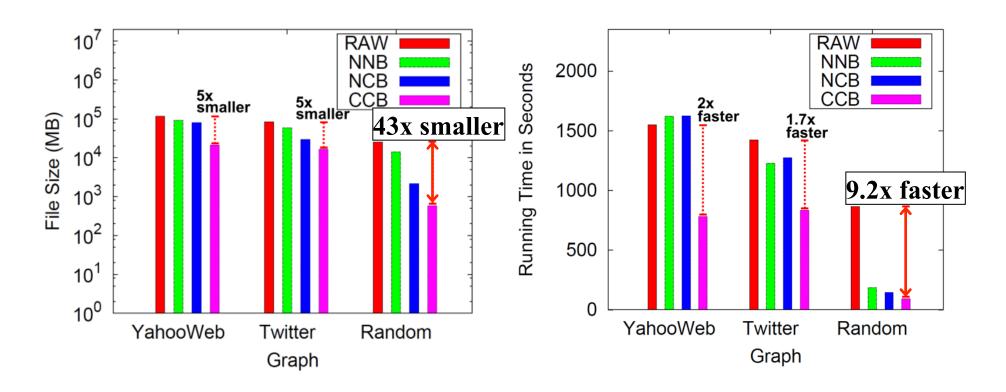


	Block Encoding ?♪	Compression ?♪	Clustering?♪
RAW♪	No	No⊅	No
NNB)	Yes⊅	No⊅	No♪
NCB	Yes⊅	Yes⊅	No♪
ССВ♪	Yes⊅	Yes⊅	Yes⊅

SIGMOD'12

Carnegie Mellon

Result



A: Proposed Method(CCB) provides 43x smaller storage, 9.2x faster running time

Outline

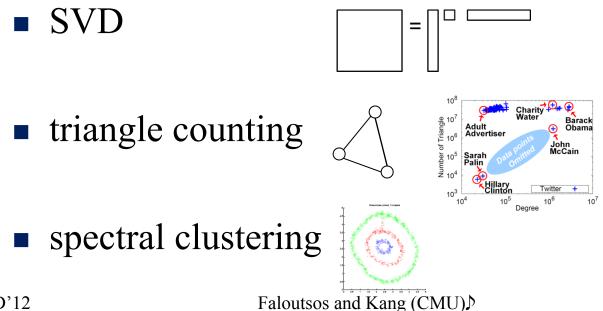
- Problem#1: Patterns in graphs
- Problem#2: Tools
- Problem#3: Scalability PEGASUS
 - Structure Analysis
- Eigensolver
 - Graph Layout and Compression
 - Conclusions

Background: Eigensolve

Eigensolver

Given: (adjacency) matrix A,

- Compute: top k eigenvalues and eigenvectors of A
- Application:



Problem Definition

Q4: How to design a billion-scale eigensolver?
 Existing eigensolver: can handle millions of nodes a nd edges

Efficient Eigensolver

Lanczos Iterations

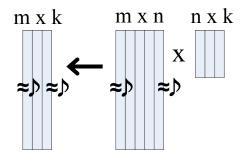
$$\begin{split} \beta_0 &= 0, q_0 = 0, b = \text{arbitrary}, q_1 = b/||b| \\ \text{for } n &= 1, 2, 3, \dots \\ v &= Aq_n \\ \alpha_n &= q_n^T v \\ v &= v - \beta_{n-1}q_{n-1} - \alpha_n q_n \\ \beta_n &= ||v|| \\ q_{n+1} &= v/\beta_n \end{split}$$

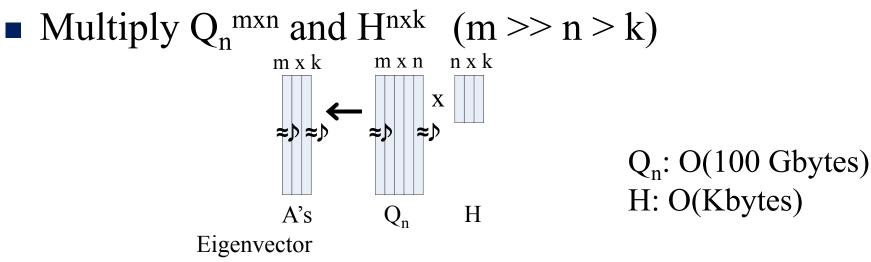
1 matrix-vector multiplication per iteration

SIGMOD'12

Proposed Method

- HEigen algorithm (Hadoop Eigen-solver)
 - Selectively parallelize 'Lanczos-SO' algorithm
 - Block encoding
 - Exploiting skewness in matrix-matrix mult.
 - $(m \gg n > k)$



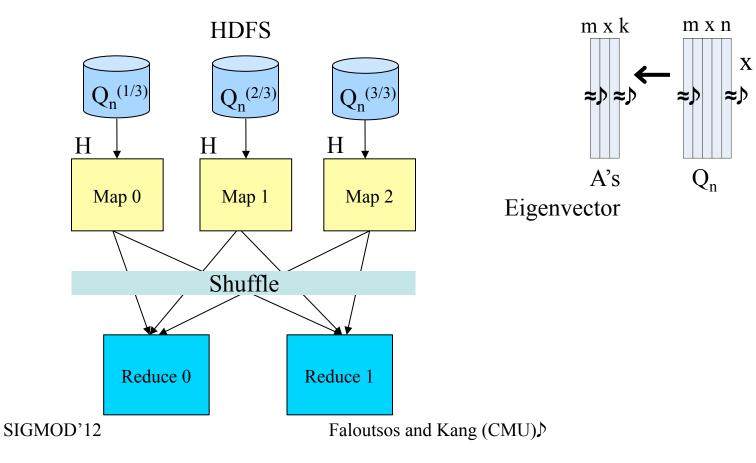


- Naïve multiplication: too expensive
- Proposed:
 - `cache'-based multiplication: broadcast the small matri x H to all the machines that contains Q_n

Details

Skewed Matrix-Matrix Mult.

 `cache'-based multiplication: broadcast the small matrix H to all the machines that contains Q_n



Details

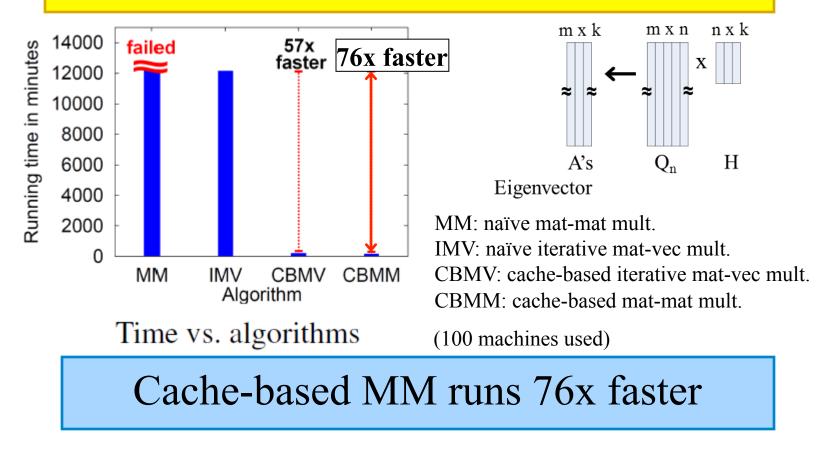
n x k

Η

Carnegie Mellon

Skewed Matrix-Matrix Mult.

Which Matrix-Matrix multiplication algorithm runs the fastest?

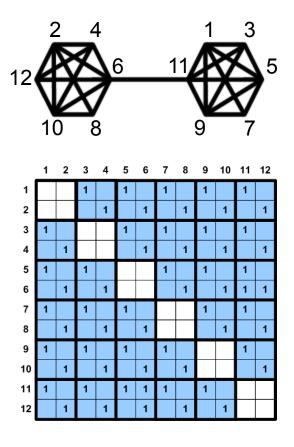


Outline

- Problem#1: Patterns in graphs
- Problem#2: Tools
- Problem#3: Scalability PEGASUS
 - Structure Analysis
 - Eigensolver
- Graph Layout and Compression
- Conclusions

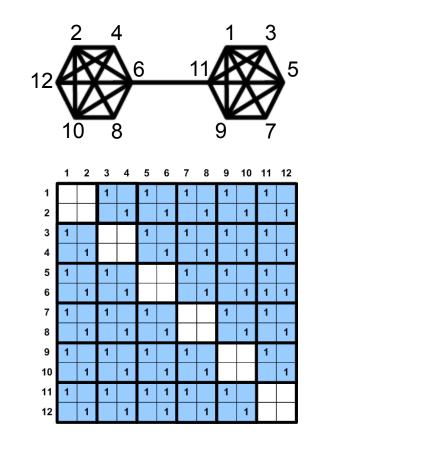
Node Order Matter

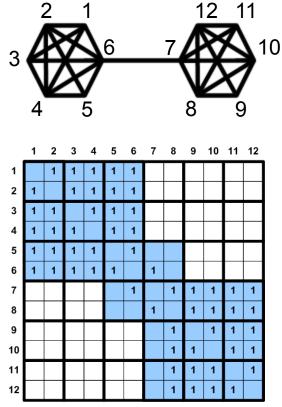
■ A graph and the adjacency matrix♪



Node Order Matter

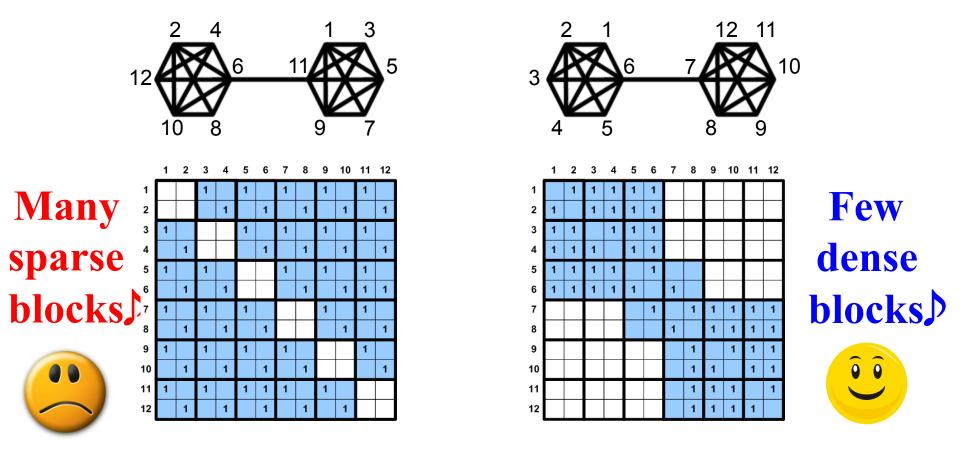
Same graphs with different orderings.





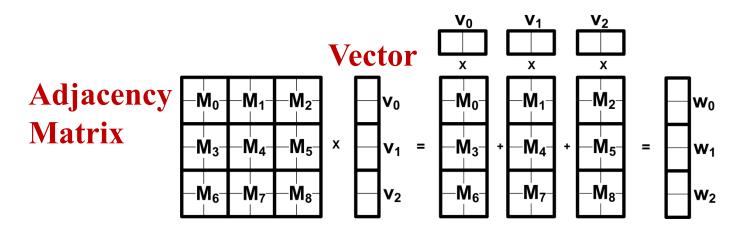
Good ordering = Good compression

Same graphs with different orderings.



Application

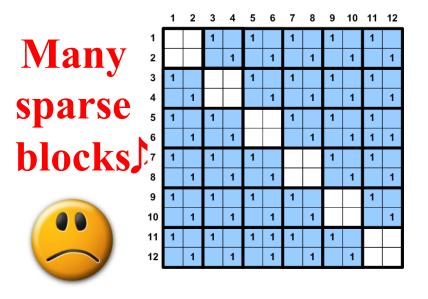
Block-based matrix-vector multiplication

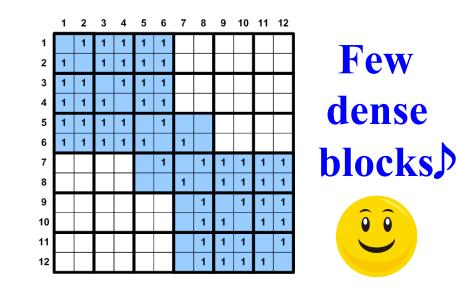


Few, dense blocks => Better compression, faster running time

Problem Definition

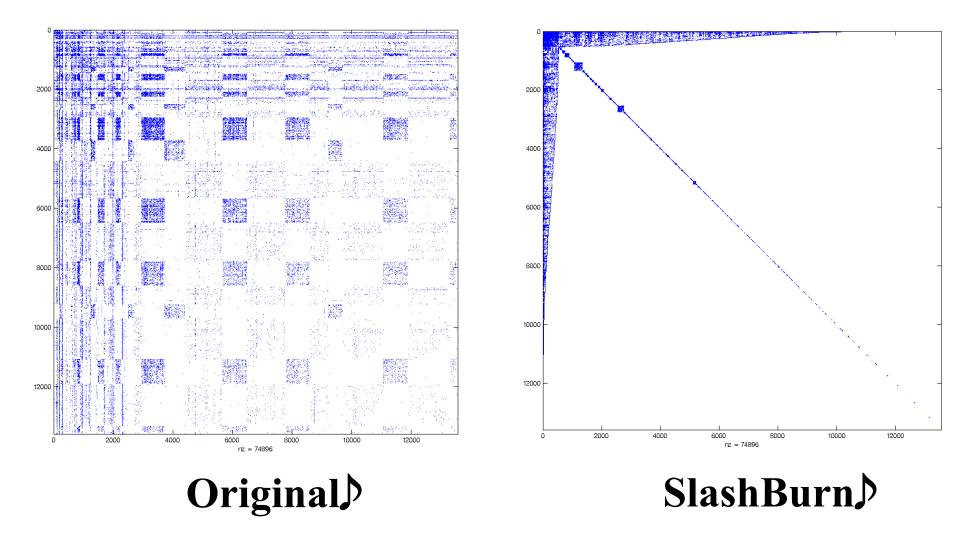
- Given a graph, how can we lay-out its edges so th at nonzero elements are well-clustered?
- Better clustering = better compression





Carnegie Mellon

Main Result



Outline

- Problem#3: Scalability PEGASUS
 - Structure Analysis
 - Eigensolver
 - Graph Layout and Compression
 - Proposed Method
 - Results
- Conclusions

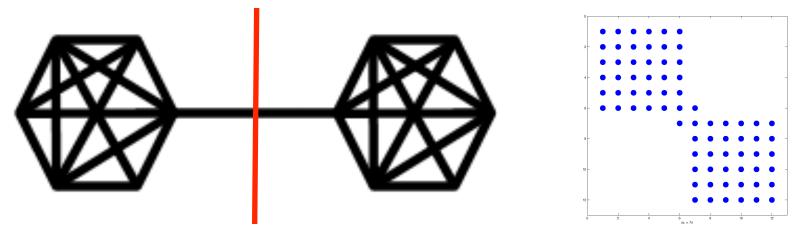
Surve

- Given a graph, how can we lay-out its edges so th at nonzero elements are well-clustered?
 - 1) Graph based clustering
 - Normalized cut, spectral clustering
 - 2) Heuristics
 - Lexicographic ordering for Web
 - Shingle ordering

- Goal: find homogeneous sets of nodes from graph
 s
 - E.g.) Spectral clustering and normalized cut
 - Many intra-edges, few inter-edges

Caveman Communities

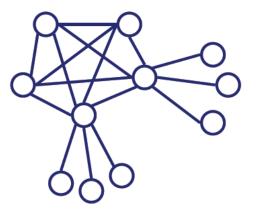
- Goal: find homogeneous sets of nodes from graph
 s
 - E.g.) Spectral clustering and normalized cut
 - Many intra-edges, few inter-edges



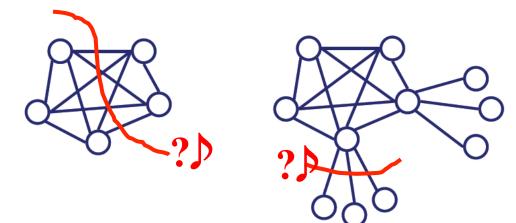
Caveman Communities

But, real graphs: no good cuts

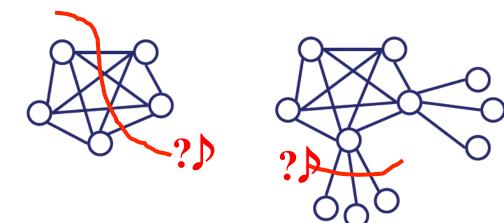
[Tauro+ 01], [Siganos+ 06], [Chakrabarti +04], [Lesko vec+ 08]



- But, real graphs: no good cuts
 - [Tauro+ 01], [Siganos+ 06], [Chakrabarti +04], [Lesko vec+ 08]



- But, real graphs: no good cuts
 - [Tauro+ 01], [Siganos+ 06], [Chakrabarti +04], [Lesko vec+ 08]



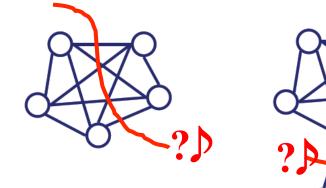
• What should we do?

2) Older Heuristics

- Web graph: lexicographic ordering [Boldi+, 04]
 Locality : many intra edges between neighbors
 Similarity : out links of neighbors are similar
- Social network: shingle ordering [Chierichetti+ 09]
 Group nodes with similar our-neighbors

Summary : Previous Work

- Tries to find homogenous regions for graph comp ression
 - \square Fails to find them, because they often don't exist)

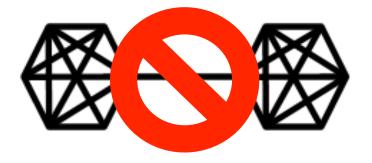


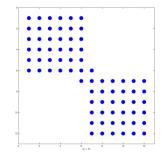
Our Observation

Caveman assumption

Our Observation

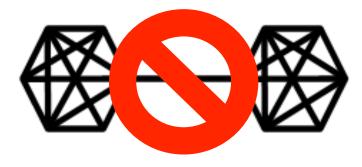
Caveman assumption: wrong!

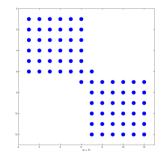




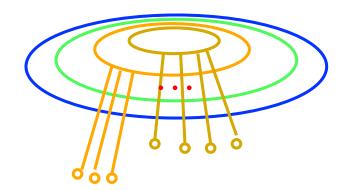
Our Solution

Caveman assumption: wrong!



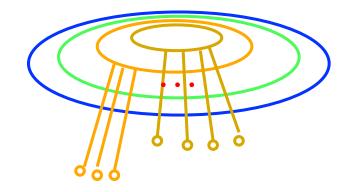


 Instead, we envision graphs as nodes connected by connectors connected by super connectors...



Our Solution

 Instead, we envision graphs as nodes connected by connectors connected by super connectors...



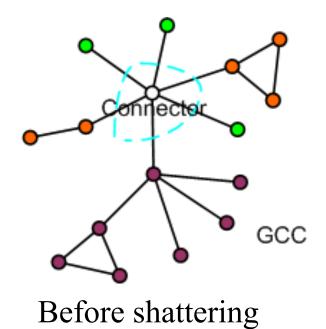
Use "Graph Shattering" to `peel' the graphs from super connectors, and then connectors,

Graph Shattering

- *k*-shattering of a graph G
 - Removes top k connectors and their incidents edges fro m G

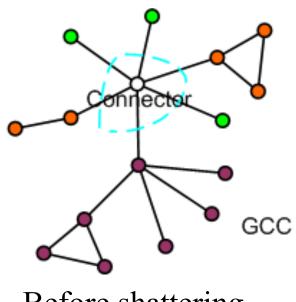
Carnegie Mellon

Graph Shattering

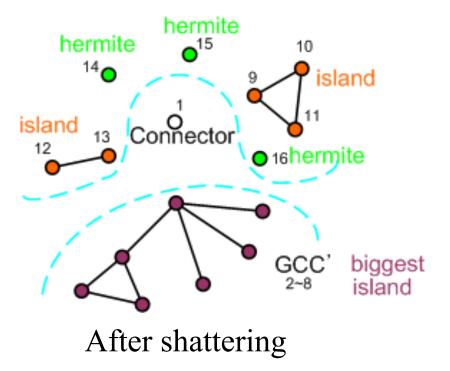


SIGMOD'12

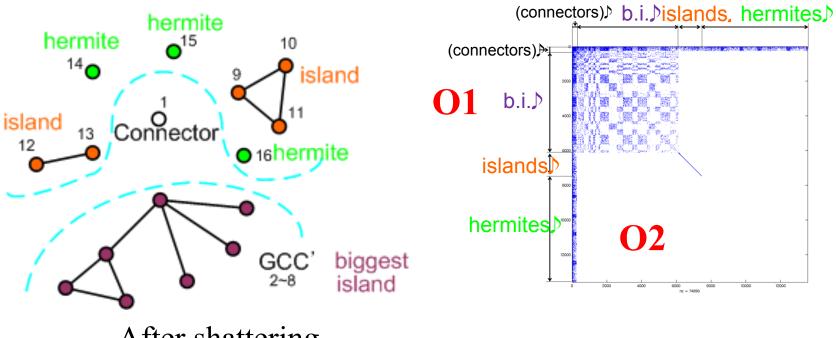
Graph Shattering



Before shattering



Graph Shattering



After shattering

Observations in real graphs
 O1. Portion of GCC is much smaller after shattering
 O2. A lot of disconnected components.

SIGMOD'12

Slash-Burn method (intuition)

- 'burn' the top k connectors, and 'slash' the edges
- Move k connectors to the front of the row/column, sort connected components by decr. size
- Recurse on the remaining GCC



Outline

- Problem#3: Scalability PEGASUS
 - Structure Analysis
 - Eigensolver
 - Graph Layout and Compression
 - Proposed Method
 - Results
- Conclusions

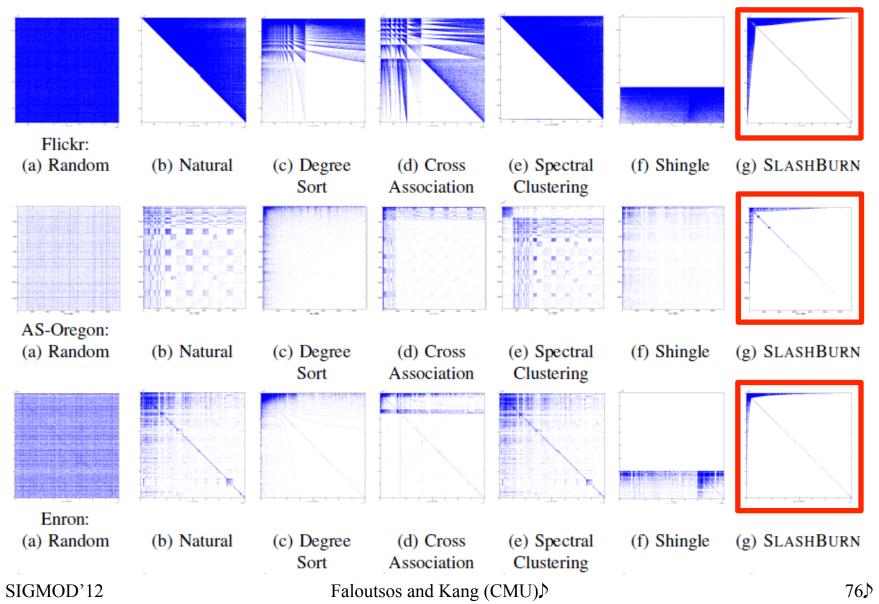
Goal of Experiment

- [Q1] Compression savings?
- [Q2] Running time savings?

Carnegie Mellon

A1. Compression

Winner♪



A1. Compression

Cost functions used

1) Number of non-empty blocks

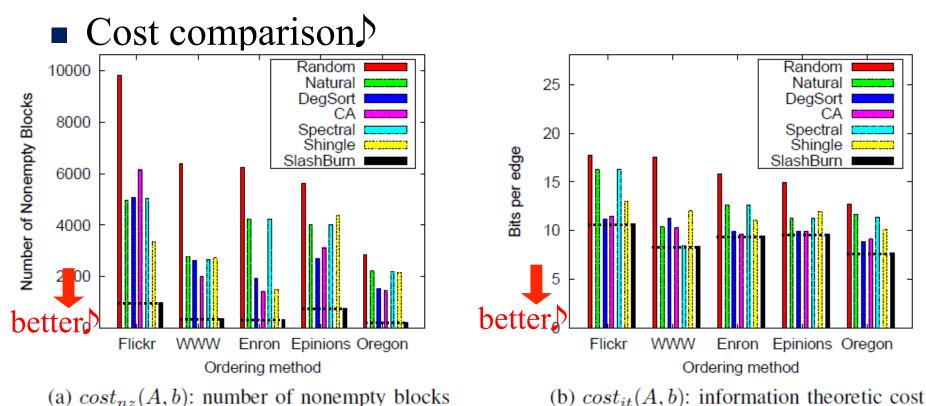
2) Information theoretic cost : minimum bits to encode no nzero elements inside blocks

model complexity,
$$|T| \cdot 2log \frac{n}{b} + \sum_{\tau \in T} b^2 \cdot H(\frac{z(\tau)}{b^2})$$
 costs given the model.

|T|: # of nonempty blocks
n: # of nodes
b: block width
H(): Shannon entropy func

Carnegie Mellon

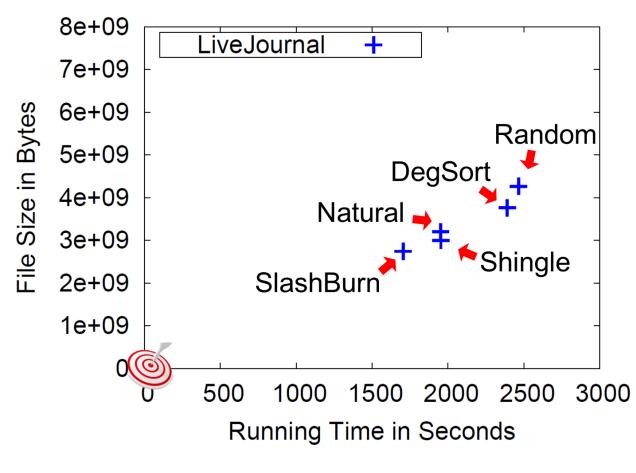
A1. Compression



• SlashBurn outperforms all competitors for all dataset!

(smallest number of nonempty blocks, as well as bits per edge)

A2. Running Tim



• SlashBurn outperforms all competitors ! (running time as well as file size)

Outline

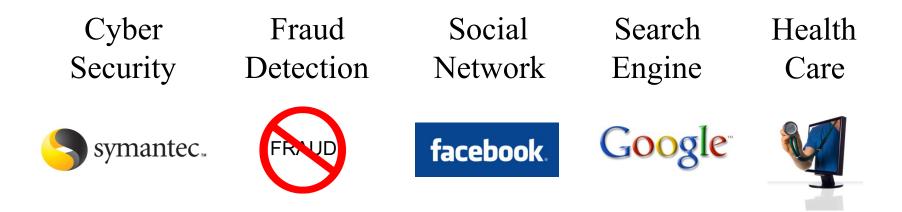
- Introduction Motivation
- Problem#1: Patterns in graphs
- Problem#2: Tools
- Problem#3: Scalability PEGASUS
- ➡ Conclusions

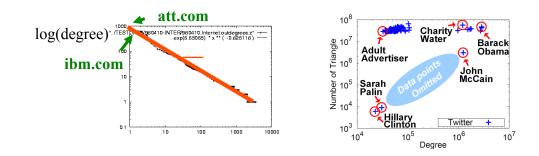
Conclusions

- PEGASUS: Peta-Scale Graph Mining System
 - Patterns and anomalies in large graphs
 - PageRank, Connected Components, Radius, Eigensolver
 - Outreach
 - Microsoft : part of Hadoop distribution for Windows Azure
 - One of the core systems for several DARPA projects (ADA MS, INARC, DTRA)

Conclusions

High impact applications require large graph mini ng





www.cs.cmu.edu/~pegasus

Complementary tutorial: *Mining Billion-Scale Graphs: Systems and Implementations*: Haixun Wang et al

SIGMOD'12

Faloutsos and Kang (CMU)♪