
CMU SCS

Mining Billion-Scale Graphs:
Patterns and Algorithms

Christos Faloutsos and U Kang
CMU

Part 2: Algorithms
Complementary to tutorial: Mining Billion-Scale Graphs:
Systems and Implementations: Haixun Wang et al

CMU SCS

SIGMOD'12 Faloutsos and Kang (CMU) 2

Part 2:
Algorithms

CMU SCS

Faloutsos and Kang (CMU) 3

Outline

•  Problem#1: Patterns in graphs
•  Problem#2: Tools
•  Problem#3: Scalability - PEGASUS

– Structure Analysis
– Eigensolver
– Graph Layout and Compression

•  Conclusions

SIGMOD'12

CMU SCS

Our goal:

Faloutsos and Kang (CMU) 4

Open source system for mining huge graphs:

PEGASUS project (PEta GrAph mining
System)

•  www.cs.cmu.edu/~pegasus
•  code and papers

SIGMOD'12

Faloutsos and Kang (CMU)
 5
SIGMOD’12

Scalability Challenge

  The sizes of graphs are growing!

0.5 billion users
60 TBytes/day
15 PBytes/total

ClickStream Data
0.26 PBytes
1 billion query-URL

20 PBytes/day

[Dean+ ’08]

[Liu+ ’09] [Thusoo+ ’10]

1.4 billion web pages
6.6 billion edges

[Broder+ ‘04]

Faloutsos and Kang (CMU)
 6
SIGMOD’12

Scalability Challenge

  The sizes of graphs are growing!

0.5 billion users
60 TBytes/day
15 PBytes/total

ClickStream Data
0.26 PBytes
1 billion query-URL

20 PBytes/day

[Dean+ ’08]

[Liu+ ’09] [Thusoo+ ’10]

1.4 billion web pages
6.6 billion edges

[Broder+ ‘04]

Q: How can we handle large graphs
which don’t fit into the memory,
or disks of a single machine?

A: Parallelism, with MapReduce!

Faloutsos and Kang (CMU)
 7
SIGMOD’12

Background: MapReduce

  MapReduce/Hadoop Framework

Map 0 Map 1 Map 2

Reduce 0 Reduce 1

Shuffle

HDFS

HDFS HDFS: fault tolerant, scalable,
distributed storage system

Mapper: read data from HDFS,
output (k,v) pair

Reducer: read output from mapp
ers, output a new (k,v) pair to H
DFS

Output sorted by the key

Faloutsos and Kang (CMU)
 8
SIGMOD’12

Background: MapReduce

  MapReduce/Hadoop Framework

Map 0 Map 1 Map 2

Reduce 0 Reduce 1

Shuffle

HDFS

HDFS HDFS: fault tolerant, scalable,
distributed storage system

Mapper: read data from HDFS,
output (k,v) pair

Reducer: read output from mapp
ers, output a new (k,v) pair to H
DFS

Output sorted by the key

Programmers need to provide only
map() and reduce() functions

CMU SCS

Faloutsos and Kang (CMU) 9

Outline

•  Problem#1: Patterns in graphs
•  Problem#2: Tools
•  Problem#3: Scalability - PEGASUS

– Structure Analysis
– Eigensolver
– Graph Layout and Compression

•  Conclusions

SIGMOD'12

Faloutsos and Kang (CMU)
 10
SIGMOD’12

Structure Analysis

  How to scale-up structure analysis algorithm?
  Q1: How to unify many structure analysis algorith

ms (connected components, PageRank, diameter/ra
dius)?

  Q2: How to design a scalable algorithm for the stru
cture analysis?

Faloutsos and Kang (CMU)
 11
SIGMOD’12

Q1: Unifying Algorithms

  Given a graph, can we compute
 - connected components,
 - PageRank,
 - Random Walk with Restart,
 - diameter/radius
with one algorithm?

Faloutsos and Kang (CMU)
 12
SIGMOD’12

Q1: Unifying Algorithms

Yes!
How ?

  Given a graph, can we compute
 - connected components,
 - PageRank,
 - Random Walk with Restart,
 - diameter/radius
with one algorithm?

Faloutsos and Kang (CMU)
 13
SIGMOD’12

Main Idea

  GIM-V
  Generalized Iterative Matrix-Vector Multiplication
  Extension of plain matrix-vector multiplication
  includes

  Connected Components
  PageRank
  RWR (Random Walk With Restart)
  Diameter Estimation

Faloutsos and Kang (CMU)
 14
SIGMOD’12

Main Idea: Intuition

  Plain M-V multiplication

1

1

0.1
•  Weighted Combination
 of Colors
•  ~ Message Passing

A
 B

C

D

Faloutsos and Kang (CMU)
 15
SIGMOD’12

Main Idea: Intuition

  Plain M-V multiplication

1

1

0.1
•  Weighted Combination
 of Colors
•  ~ Message Passing

1 1 0.1

1

1

0.1
X =

A
 B

C

D

A

B

C

D

A
 B
 C
 D

Faloutsos and Kang (CMU)
 16
SIGMOD’12

Main Idea: Intuition

  Plain M-V multiplication

1 1 0.1

1

1

0.1
X =

A

B

C

D

A
 B
 C
 D

1

1

0.1
A
 B

C

D

Faloutsos and Kang (CMU)
 17
SIGMOD’12

Main Idea: Intuition

  Plain M-V multiplication

Three Implicit Operations here:

combine2
combineAll

assign

multiply and
sum n multiplication results
update

Message sending
Message combination

1 1 0.1

1

1

0.1
X =

A

B

C

D

A
 B
 C
 D

1

1

0.1
A
 B

C

D

Faloutsos and Kang (CMU)
 18
SIGMOD’12

Main Idea

  GIM-V
  Generalizing the three operations leads to many algo

rithms

Assign

Sum

Multiply

assign

combineAll

combine2

Con. Cmpt. Diameter RWR PageRank Standard MV operations

?

Faloutsos and Kang (CMU)
 19
SIGMOD’12

Main Idea

  GIM-V for Connected Components

Assign

Sum

Multiply

assign

combineAll

combine2

Con. Cmpt. Diameter RWR PageRank Standard MV operations

MIN

MIN

Bool. X

Faloutsos and Kang (CMU)
 20
SIGMOD’12

4

3
8

Main Idea
  GIM-V for Connected Components

  How many connected components?
  Which node belong to which component?

1

2

5

6

7
1 1
2 1
3 1
4 1
5 5
6 5
7 7
8 7

component
id

node
id

Input Graph Output

Faloutsos and Kang (CMU)
 21
SIGMOD’12

Main Idea

  GIM-V for Connected Components

1
2 1
3
4
5
6
7
8

1 2 3 4 5 6 7 8

1

1
1

1
1

1
1

1
1

1
2
3
4
5
6
7
8

1
1
1
1
5
5
7
7

final
vector

initial
vector

4

3
8

1

2

5

6

7

?

Faloutsos and Kang (CMU)
 22
SIGMOD’12

  GIM-V for Connected Components

Main Idea

min(1, min(2))

min(2, min(1,3))

min(3, min(2,4))

min(4, min(3))

min(5, min(6))

min(6, min(5))

min(7, min(8))

min(8, min(7))

1
2 1
3
4
5
6
7
8

1 2 3 4 5 6 7 8

1

1
1

1
1

1
1

1
1

1
1
2
3
5
5
7
7

1
2
3
4
5
6
7
8

4

3
8

1

2

5
6

7

4

3
8

1

2

5
6

7

1
1
1
2
5
5
7
7

1
1
1
1
5
5
7
7

4

3
8

1

2

5
6

7

4

3
8

1

2

5
6

7

“Sending Invitations”
“Accept the Smallest”

Faloutsos and Kang (CMU)
 23
SIGMOD’12

  GIM-V for Connected Components

Main Idea

min(1, min(2))

min(2, min(1,3))

min(3, min(2,4))

min(4, min(3))

min(5, min(6))

min(6, min(5))

min(7, min(8))

min(8, min(7))

1
2 1
3
4
5
6
7
8

1 2 3 4 5 6 7 8

1

1
1

1
1

1
1

1
1

1
1
2
3
5
5
7
7

1
2
3
4
5
6
7
8

4

3
8

1

2

5
6

7

4

3
8

1

2

5
6

7

1
1
1
2
5
5
7
7

1
1
1
1
5
5
7
7

4

3
8

1

2

5
6

7

4

3
8

1

2

5
6

7

“Sending Invitations”
“Accept the Smallest”

1 GIM-V with MIN() operation
= find minimum node ids within 1 hop

Faloutsos and Kang (CMU)
 24
SIGMOD’12

  GIM-V for Connected Components

Main Idea

min(1, min(2))

min(2, min(1,3))

min(3, min(2,4))

min(4, min(3))

min(5, min(6))

min(6, min(5))

min(7, min(8))

min(8, min(7))

1
2 1
3
4
5
6
7
8

1 2 3 4 5 6 7 8

1

1
1

1
1

1
1

1
1

1
1
2
3
5
5
7
7

1
2
3
4
5
6
7
8

4

3
8

1

2

5
6

7

4

3
8

1

2

5
6

7

1
1
1
2
5
5
7
7

1
1
1
1
5
5
7
7

4

3
8

1

2

5
6

7

4

3
8

1

2

5
6

7

“Sending Invitations”
“Accept the Smallest”

(k) GIM-V with MIN() operation
= find minimum node ids within (k) hops

Faloutsos and Kang (CMU)
 25
SIGMOD’12

  GIM-V for Connected Components

Main Idea

min(1, min(2))

min(2, min(1,3))

min(3, min(2,4))

min(4, min(3))

min(5, min(6))

min(6, min(5))

min(7, min(8))

min(8, min(7))

1
2 1
3
4
5
6
7
8

1 2 3 4 5 6 7 8

1

1
1

1
1

1
1

1
1

1
1
2
3
5
5
7
7

1
2
3
4
5
6
7
8

4

3
8

1

2

5
6

7

4

3
8

1

2

5
6

7

1
1
1
2
5
5
7
7

1
1
1
1
5
5
7
7

4

3
8

1

2

5
6

7

4

3
8

1

2

5
6

7

“Sending Invitations”
“Accept the Smallest”

Maximum # of iterations : diameter

Faloutsos and Kang (CMU)
 26
SIGMOD’12

Main Idea

  GIM-V for PageRank

Assign

Sum

Multiply

assign

combineAll

combine2

Con. Cmpt. Diameter RWR PageRank Standard MV Operations

MIN

MIN

Multiply

Assign

Sum with
rj prob

Multiply
with c

Faloutsos and Kang (CMU)
 27
SIGMOD’12

  GIM-V: PageRank
  PageRank vector p: eigenvector of A:

  Where

Main Idea

nx1 nxn nx1

Adjacency
Matrix

All elements
set to 1/n

Faloutsos and Kang (CMU)
 28
SIGMOD’12

  GIM-V: PageRank
  Algorithm: Power method

 (many multiplications)

Main Idea

nx1 nxn nx1

Faloutsos and Kang (CMU)
 29
SIGMOD’12

  GIM-V: PageRank

Main Idea

nx1 nxn nx1

Algorithm: Power method
 (many multiplications)

Faloutsos and Kang (CMU)
 30
SIGMOD’12

Main Idea

  GIM-V

Assign

Sum

Multiply

assign

combineAll

combine2

Con. Cmpt. Diameter RWR PageRank Standard MV Operations

MIN

MIN

Multiply

Assign

Sum with rj
prob.

Multiply
with c

Assign

Sum with res
tart prob

Multiply
with c

BIT-OR()

BIT-OR()

Multiply b
it-vector

(approx.)

Faloutsos and Kang (CMU)
 31
SIGMOD’12

Two Restrictions on HDFS

  [R1] HDFS is location transparent
  Users don’t know which file is located in which ma

chine
  [R2] A line is never split

  A large file is split into pieces of a size(e.g. 256 M
B)

  Users don’t know the point of the split

Faloutsos and Kang (CMU)
 32
SIGMOD’12

Q2: Fast Algorithms for GIM-V

  Given the two restrictions R1 and R2,
 how can we make faster algorithms for

 GIM-V in Hadoop?
  Three main ideas:

  I1) Block Multiplication
  I2) Clustering
  I3) Compression

Faloutsos and Kang (CMU)
 33
SIGMOD’12

  I1) Block-Method

Main Idea

1
2
3
4
5
6
7
8

1

1
1

1

1

1 1

1
1
1

1

1
1

1

1

1 1

1

1
1

1
2
3
4

+

1
2
3
4

+
5
6
7
8

5
6
7
8

5
6
7
8

5
6
7
8

5
6
7
8

Faloutsos and Kang (CMU)
 34
SIGMOD’12

  I1) Block-Method

Main Idea

1
2
3
4
5
6
7
8

1. Group elements together into 1 line
2. Storage for an element: 2log n bits -> 2log b bits
3. Adjust the MapReduce code(block multiplication)

1

1
1

1

1

1 1

1
1
1

1

1
1

1

1

1 1

1

1
1

1
2
3
4

+

1
2
3
4

+
5
6
7
8

5
6
7
8

log b bits
log n bits

b: block width
n: # of nodes

5
6
7
8

5
6
7
8

5
6
7
8

Faloutsos and Kang (CMU)
 35
SIGMOD’12

  I1) Block-Method

Main Idea

1
2
3
4
5
6
7
8

1

1
1

1

1

1 1

1
1
1

1

1
1

1

1

1 1

1

1
1

1
2
3
4

+

1
2
3
4

+
5
6
7
8

5
6
7
8

Thanks to the encoding,
 - file size is decreased,
 - shuffle time is decreased.

Faloutsos and Kang (CMU)
 36
SIGMOD’12

Main Idea

Q: Can we do even better?

Faloutsos and Kang (CMU)
 37
SIGMOD’12

37

Main Idea

  I2) Clustering

1
1

1
1

1
1

1
1

1
1

1

1
1

1

1

1 1

1
1
1

Preprocess

A: preprocessing for clustering
(only green blocks are stored in HDFS)

Faloutsos and Kang (CMU)
 38
SIGMOD’12

Main Idea

  I3) Compression

1
1

1
1

1
1

1
1

1
1

Compress

A: compress clustered blocks

1
1

1
1

1
1

1
1

1
1

ZIP

ZIP

Faloutsos and Kang (CMU)
 39
SIGMOD’12

Result

Block Encoding
?

Compression
?

Clustering?

RAW
 No
 No
 No

NNB
 Yes
 No
 No

NCB
 Yes
 Yes
 No

CCB
 Yes
 Yes
 Yes

43x smaller

9.2x faster

Faloutsos and Kang (CMU)
 40
SIGMOD’12

Result

Block Encoding?
 Compression?
 Clustering?

RAW
 No
 No
 No

NNB
 Yes
 No
 No

NCB
 Yes
 Yes
 No

CCB
 Yes
 Yes
 Yes

A: Proposed Method(CCB) provides
43x smaller storage, 9.2x faster running time

43x smaller

9.2x faster

CMU SCS

Faloutsos and Kang (CMU) 41

Outline

•  Problem#1: Patterns in graphs
•  Problem#2: Tools
•  Problem#3: Scalability - PEGASUS

– Structure Analysis
– Eigensolver
– Graph Layout and Compression

•  Conclusions

SIGMOD'12

Faloutsos and Kang (CMU)
 42
SIGMOD’12

Background: Eigensolver

  Eigensolver
  Given: (adjacency) matrix A,
  Compute: top k eigenvalues and eigenvectors of A
  Application:

  SVD

  triangle counting

  spectral clustering

Faloutsos and Kang (CMU)
 43
SIGMOD’12

Problem Definition

  Q4: How to design a billion-scale eigensolver?
  Existing eigensolver: can handle millions of nodes a

nd edges

Faloutsos and Kang (CMU)
 44
SIGMOD’12

Efficient Eigensolver

  Lanczos Iterations

1 matrix-vector multiplication
per iteration

Faloutsos and Kang (CMU)
 45
SIGMOD’12

Proposed Method

  HEigen algorithm (Hadoop Eigen-solver)
  Selectively parallelize ‘Lanczos-SO’ algorithm
  Block encoding
  Exploiting skewness in matrix-matrix mult.

  (m >> n > k)

x
≈
 ≈
 ≈
 ≈

m x k m x n n x k

Faloutsos and Kang (CMU)
 46
SIGMOD’12

Skewed Matrix-Matrix
Mult.

  Multiply Qn
mxn and Hnxk (m >> n > k)

  Naïve multiplication: too expensive
  Proposed:

  `cache’-based multiplication: broadcast the small matri
x H to all the machines that contains Qn

x

A’s
Eigenvector

Qn H

Qn: O(100 Gbytes)
H: O(Kbytes)

≈
 ≈
 ≈
 ≈

m x k m x n n x k

Faloutsos and Kang (CMU)
 47
SIGMOD’12

Skewed Matrix-Matrix
Mult.

  `cache’-based multiplication: broadcast the small
matrix H to all the machines that contains Qn

Map 0 Map 1 Map 2

Reduce 0 Reduce 1

Shuffle

HDFS

Qn
(1/3) Qn

(2/3) Qn
(3/3)

H H H

x

A’s
Eigenvector

Qn H

≈
 ≈
 ≈
 ≈

m x k m x n n x k

Faloutsos and Kang (CMU)
 48
SIGMOD’12

Skewed Matrix-Matrix Mult.

Cache-based MM runs 76x faster

Which Matrix-Matrix multiplication
algorithm runs the fastest?

MM: naïve mat-mat mult.
IMV: naïve iterative mat-vec mult.
CBMV: cache-based iterative mat-vec mult.
CBMM: cache-based mat-mat mult.
(100 machines used)

76x faster

CMU SCS

Faloutsos and Kang (CMU) 49

Outline

•  Problem#1: Patterns in graphs
•  Problem#2: Tools
•  Problem#3: Scalability - PEGASUS

– Structure Analysis
– Eigensolver
– Graph Layout and Compression

•  Conclusions

SIGMOD'12

Faloutsos and Kang (CMU)
 50
SIGMOD’12

Node Order Matters

  A graph and the adjacency matrix

4 2

12

10 8

6 11

3 1

9 7

5

Faloutsos and Kang (CMU)
 51
SIGMOD’12

Node Order Matters

  Same graphs with different orderings

1 2

3

4 5

6 7

11 12

8 9

10

4 2

12

10 8

6 11

3 1

9 7

5

Faloutsos and Kang (CMU)
 52
SIGMOD’12

Good ordering = Good compression

  Same graphs with different orderings

1 2

3

4 5

6 7

11 12

8 9

10

4 2

12

10 8

6 11

3 1

9 7

5

Many
sparse
blocks

Few
dense
blocks

Faloutsos and Kang (CMU)
 53
SIGMOD’12

Application

  Block-based matrix-vector multiplication

Few, dense blocks
=> Better compression, faster running time

Adjacency
Matrix

Vector

Faloutsos and Kang (CMU)
 54
SIGMOD’12

Problem Definition

  Given a graph, how can we lay-out its edges so th
at nonzero elements are well-clustered?

  Better clustering = better compression

Many
sparse
blocks

Few
dense
blocks

Faloutsos and Kang (CMU)
 55
SIGMOD’12

Main Result

Original
 SlashBurn

CMU SCS

Faloutsos and Kang (CMU) 56

Outline

•  …
•  Problem#3: Scalability - PEGASUS

– Structure Analysis
– Eigensolver
– Graph Layout and Compression

•  Proposed Method
•  Results

•  Conclusions

SIGMOD'12

Faloutsos and Kang (CMU)
 57
SIGMOD’12

Survey

  Given a graph, how can we lay-out its edges so th
at nonzero elements are well-clustered?
1) Graph based clustering

  Normalized cut, spectral clustering

2) Heuristics
  Lexicographic ordering for Web
  Shingle ordering

Faloutsos and Kang (CMU)
 58
SIGMOD’12

1) Graph Based Clustering

  Goal: find homogeneous sets of nodes from graph
s
  E.g.) Spectral clustering and normalized cut
  Many intra-edges, few inter-edges

Caveman Communities

Faloutsos and Kang (CMU)
 59
SIGMOD’12

1) Graph Based Clustering

  Goal: find homogeneous sets of nodes from graph
s
  E.g.) Spectral clustering and normalized cut
  Many intra-edges, few inter-edges

Caveman Communities

Faloutsos and Kang (CMU)
 60
SIGMOD’12

1) Graph Based Clustering

  But, real graphs: no good cuts
  [Tauro+ 01], [Siganos+ 06], [Chakrabarti +04], [Lesko

vec+ 08]

Faloutsos and Kang (CMU)
 61
SIGMOD’12

1) Graph Based Clustering

  But, real graphs: no good cuts
  [Tauro+ 01], [Siganos+ 06], [Chakrabarti +04], [Lesko

vec+ 08]

?
 ?

Faloutsos and Kang (CMU)
 62
SIGMOD’12

1) Graph Based Clustering

  But, real graphs: no good cuts
  [Tauro+ 01], [Siganos+ 06], [Chakrabarti +04], [Lesko

vec+ 08]

  What should we do?

?
 ?

Faloutsos and Kang (CMU)
 63
SIGMOD’12

2) Older Heuristics

  Web graph: lexicographic ordering [Boldi+, 04]
  Locality : many intra edges between neighbors
  Similarity : out links of neighbors are similar

  Social network: shingle ordering [Chierichetti+ 09
]
  Group nodes with similar our-neighbors

Faloutsos and Kang (CMU)
 64
SIGMOD’12

Summary : Previous Works

  Tries to find homogenous regions for graph comp
ression
  Fails to find them, because they often don’t exist

?
 ?

Faloutsos and Kang (CMU)
 65
SIGMOD’12

Our Observation

  Caveman assumption

Faloutsos and Kang (CMU)
 66
SIGMOD’12

Our Observation

  Caveman assumption: wrong!

Faloutsos and Kang (CMU)
 67
SIGMOD’12

Our Solution

  Caveman assumption: wrong!

  Instead, we envision graphs as
 nodes connected by
 connectors connected by
 super connectors…

…

Faloutsos and Kang (CMU)
 68
SIGMOD’12

Our Solution

  Instead, we envision graphs as
 nodes connected by
 connectors connected by
 super connectors…

  Use “Graph Shattering” to `peel’ the graphs from
 super connectors, and then
 connectors,
 …

…

Faloutsos and Kang (CMU)
 69
SIGMOD’12

Graph Shattering

  k-shattering of a graph G
  Removes top k connectors and their incidents edges fro

m G

Faloutsos and Kang (CMU)
 70
SIGMOD’12

Graph Shattering

Before shattering

Faloutsos and Kang (CMU)
 71
SIGMOD’12

Graph Shattering

Before shattering After shattering

Faloutsos and Kang (CMU)
 72
SIGMOD’12

Graph Shattering

  Observations in real graphs
O1. Portion of GCC is much smaller after shattering
O2. A lot of disconnected components

After shattering

O1

O2

(connectors)

(connectors)

islands

islands
hermites
b.i.

hermites

b.i.

Faloutsos and Kang (CMU)
 73
SIGMOD’12

Slash-Burn method (intuition)

  ‘burn’ the top k connectors, and ‘slash’ the edges
  Move k connectors to the front of the row/column,
 sort connected components by decr. size
  Recurse on the remaining GCC

(connectors)

(connectors)

CMU SCS

Faloutsos and Kang (CMU) 74

Outline

•  …
•  Problem#3: Scalability - PEGASUS

– Structure Analysis
– Eigensolver
– Graph Layout and Compression

•  Proposed Method
•  Results

•  Conclusions

SIGMOD'12

Faloutsos and Kang (CMU)
 75
SIGMOD’12

Goal of Experiments

  [Q1] Compression savings?

  [Q2] Running time savings?

Faloutsos and Kang (CMU)
 76
SIGMOD’12

A1. Compression
 Winner

Faloutsos and Kang (CMU)
 77
SIGMOD’12

A1. Compression

  Cost functions used
1) Number of non-empty blocks
2) Information theoretic cost : minimum bits to encode no
nzero elements inside blocks

|T|: # of nonempty blocks
n: # of nodes
b: block width
H(): Shannon entropy func
.

model
complexity

costs
given the model

Faloutsos and Kang (CMU)
 78
SIGMOD’12

A1. Compression

  Cost comparison

•  SlashBurn outperforms all competitors for all dataset!
(smallest number of nonempty blocks, as well as bits per edge)

better
better

Faloutsos and Kang (CMU)
 79
SIGMOD’12

A2. Running Time

•  SlashBurn outperforms all competitors !
(running time as well as file size)

CMU SCS

Outline

•  Introduction – Motivation
•  Problem#1: Patterns in graphs
•  Problem#2: Tools
•  Problem#3: Scalability - PEGASUS
•  Conclusions

ECML/PKDD'10 C. Faloutsos (CMU) 80

Faloutsos and Kang (CMU)
 81
SIGMOD’12

Conclusions

  PEGASUS: Peta-Scale Graph Mining System
  Patterns and anomalies in large graphs

  PageRank, Connected Components, Radius, Eigensolver
  Outreach

  Microsoft : part of Hadoop distribution for Windows Azure
  One of the core systems for several DARPA projects (ADA

MS, INARC, DTRA)

www.cs.cmu.edu/~pegasus

Faloutsos and Kang (CMU)
 82
SIGMOD’12

Conclusions

  High impact applications require large graph mini
ng

Cyber
Security

Fraud
Detection

Social
Network

Search
Engine

Health
Care

Faloutsos and Kang (CMU)
 83
SIGMOD’12

Thank you !

log(degree)
att.com

ibm.com

www.cs.cmu.edu/~pegasus

Complementary tutorial: Mining Billion-Scale Graphs:
Systems and Implementations: Haixun Wang et al

