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Outline 

•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability - PEGASUS 

– Structure Analysis 
– Eigensolver 
– Graph Layout and Compression 

•  Conclusions 
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Open source system for mining huge graphs: 

PEGASUS project (PEta GrAph mining 
System)  

•  www.cs.cmu.edu/~pegasus 
•  code and papers 

SIGMOD'12 
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Scalability Challenge 

  The sizes of graphs are growing!   

0.5 billion users 
60 TBytes/day 
15 PBytes/total 

ClickStream Data 
0.26 PBytes 
1 billion query-URL 

20 PBytes/day 

[Dean+ ’08] 

[Liu+ ’09] [Thusoo+ ’10] 

1.4 billion web pages 
6.6 billion edges 

[Broder+ ‘04] 
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Scalability Challenge 

  The sizes of graphs are growing!   

0.5 billion users 
60 TBytes/day 
15 PBytes/total 

ClickStream Data 
0.26 PBytes 
1 billion query-URL 

20 PBytes/day 

[Dean+ ’08] 

[Liu+ ’09] [Thusoo+ ’10] 

1.4 billion web pages 
6.6 billion edges 

[Broder+ ‘04] 

Q: How can we handle large graphs 
which don’t fit into the memory,  
or disks of a single machine? 

A: Parallelism, with MapReduce! 
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Background: MapReduce

  MapReduce/Hadoop Framework 

Map 0 Map 1 Map 2 

Reduce 0 Reduce 1 

Shuffle 

HDFS 

HDFS HDFS: fault tolerant, scalable,  
distributed storage system 

Mapper: read data from HDFS, 
output (k,v) pair 

Reducer: read output from mapp
ers, output a new (k,v) pair to H
DFS 

Output sorted by the key 
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Background: MapReduce

  MapReduce/Hadoop Framework 

Map 0 Map 1 Map 2 

Reduce 0 Reduce 1 

Shuffle 

HDFS 

HDFS HDFS: fault tolerant, scalable,  
distributed storage system 

Mapper: read data from HDFS, 
output (k,v) pair 

Reducer: read output from mapp
ers, output a new (k,v) pair to H
DFS 

Output sorted by the key 

Programmers need to provide only  
map() and reduce() functions 
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Outline 

•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability - PEGASUS 

– Structure Analysis 
– Eigensolver 
– Graph Layout and Compression 

•  Conclusions 
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Structure Analysis 

  How to scale-up structure analysis algorithm? 
  Q1: How to unify many structure analysis algorith

ms (connected components, PageRank, diameter/ra
dius)? 

  Q2: How to design a scalable algorithm for the stru
cture analysis? 
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Q1: Unifying Algorithms 

  Given a graph, can we compute 
 - connected components, 
 - PageRank, 
 - Random Walk with Restart, 
 - diameter/radius 
with one algorithm? 
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Q1: Unifying Algorithms 

Yes! 
How ? 

  Given a graph, can we compute 
 - connected components, 
 - PageRank, 
 - Random Walk with Restart, 
 - diameter/radius 
with one algorithm? 
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Main Idea 

  GIM-V 
  Generalized Iterative Matrix-Vector Multiplication 
  Extension of plain matrix-vector multiplication 
  includes 

  Connected Components 
  PageRank 
  RWR (Random Walk With Restart) 
  Diameter Estimation 
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Main Idea: Intuition 

  Plain M-V multiplication 

1 

1 

0.1 
•   Weighted Combination  
   of Colors 
•   ~ Message Passing 

A
 B


C


D
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Main Idea: Intuition 

  Plain M-V multiplication 

1 

1 

0.1 
•   Weighted Combination  
   of Colors 
•   ~ Message Passing 

1 1 0.1 

1 

1 

0.1 
X = 

A
 B


C


D


A


B


C
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A
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 C
 D
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Main Idea: Intuition 

  Plain M-V multiplication 

1 1 0.1 
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Main Idea: Intuition 

  Plain M-V multiplication 

Three Implicit Operations here: 

combine2 
combineAll 

assign 

multiply         and     
sum n multiplication results 
update 

Message sending 
Message combination 

1 1 0.1 

1 

1 

0.1 
X = 

A


B


C


D


A
 B
 C
 D
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0.1 
A
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Main Idea 

  GIM-V 
  Generalizing the three operations leads to many algo

rithms 

Assign 

Sum 

Multiply 

assign 

combineAll 

combine2 

Con. Cmpt. Diameter RWR PageRank Standard MV operations 

? 
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Main Idea 

  GIM-V for Connected Components 

Assign 

Sum 

Multiply 

assign 

combineAll 

combine2 

Con. Cmpt. Diameter RWR PageRank Standard MV operations 

MIN 

MIN 

Bool. X 
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4 

3 
8 

Main Idea 
  GIM-V for Connected Components 

  How many connected components? 
  Which node belong to which component? 

1 

2 

5 

6 

7 
1 1 
2 1 
3 1 
4 1 
5 5 
6 5 
7 7 
8 7 

component 
id 

node 
id 

Input Graph Output 
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Main Idea 

  GIM-V for Connected Components 

1 
2 1 
3 
4 
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6 
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1 2 3 4 5 6 7 8 
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final 
vector 

initial 
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  GIM-V for Connected Components


Main Idea 

min(1, min(2) ) 

min(2, min(1,3) ) 
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“Sending Invitations” 
“Accept the Smallest” 
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  GIM-V for Connected Components


Main Idea 
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“Sending Invitations” 
“Accept the Smallest” 

1 GIM-V with MIN() operation 
= find minimum node ids within 1 hop 



Faloutsos and Kang (CMU)
 24
SIGMOD’12 

  GIM-V for Connected Components


Main Idea 
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“Sending Invitations” 
“Accept the Smallest” 

(k) GIM-V with MIN() operation 
= find minimum node ids within (k) hops 



Faloutsos and Kang (CMU)
 25
SIGMOD’12 

  GIM-V for Connected Components


Main Idea 
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“Sending Invitations” 
“Accept the Smallest” 

Maximum # of iterations : diameter 
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Main Idea 

  GIM-V for PageRank 

Assign 

Sum 

Multiply 

assign 

combineAll 

combine2 

Con. Cmpt. Diameter RWR PageRank Standard MV Operations 

MIN 

MIN 

Multiply 

Assign 

Sum with 
rj prob 

Multiply 
with c 
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  GIM-V: PageRank 
  PageRank vector p: eigenvector of A: 

  Where  

Main Idea 

nx1 nxn nx1 

Adjacency 
Matrix 

All elements 
set to 1/n 
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  GIM-V: PageRank 
  Algorithm: Power method 

        (many multiplications) 

Main Idea 

nx1 nxn nx1 
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  GIM-V: PageRank 

Main Idea 

nx1 nxn nx1 

Algorithm: Power method  
                 (many multiplications) 
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Main Idea 

  GIM-V 

Assign 

Sum 

Multiply 

assign 

combineAll 

combine2 

Con. Cmpt. Diameter RWR PageRank Standard MV Operations 

MIN 

MIN 

Multiply 

Assign 

Sum with rj 
prob. 

Multiply 
with c 

Assign 

Sum with res
tart prob 

Multiply 
with c 

BIT-OR() 

BIT-OR() 

Multiply b
it-vector 

(approx.)
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Two Restrictions on HDFS 

  [R1] HDFS is location transparent 
  Users don’t know which file is located in which ma

chine 
  [R2] A line is never split 

  A large file is split into pieces of a size(e.g. 256 M
B) 

  Users don’t know the point of the split 
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Q2: Fast Algorithms for GIM-V 

  Given the two restrictions R1 and R2, 
   how can we make faster algorithms for  

 GIM-V in Hadoop? 
  Three main ideas: 

  I1) Block Multiplication 
  I2) Clustering 
  I3) Compression 
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  I1) Block-Method 

Main Idea 
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  I1) Block-Method 

Main Idea 

1 
2 
3 
4 
5 
6 
7 
8 

1. Group elements together into 1 line 
2. Storage for an element: 2log n bits -> 2log b bits 
3. Adjust the MapReduce code(block multiplication) 
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b: block width 
n: # of nodes 
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  I1) Block-Method 

Main Idea 
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Thanks to the encoding, 
  - file size is decreased, 
  - shuffle time is decreased. 
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Main Idea 

Q: Can we do even better? 
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37 

Main Idea 

  I2) Clustering 

1 
1 

1 
1 

1 
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1 
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1 
1 
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1 
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1 

1 

1 1 

1 
1 
1 

Preprocess 

A: preprocessing for clustering 
(only green blocks are stored in HDFS) 
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Main Idea 

  I3) Compression 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

Compress 

A: compress clustered blocks 
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1 

1 
1 

1 
1 

ZIP


ZIP
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Result 

Block Encoding
?


Compression
?


Clustering?


RAW
 No
 No
 No

NNB
 Yes
 No
 No

NCB
 Yes
 Yes
 No

CCB
 Yes
 Yes
 Yes


43x smaller 

9.2x faster 
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Result 

Block Encoding?
 Compression?
 Clustering?


RAW
 No
 No
 No


NNB
 Yes
 No
 No


NCB
 Yes
 Yes
 No


CCB
 Yes
 Yes
 Yes


A: Proposed Method(CCB) provides 
43x smaller storage, 9.2x faster running time 

43x smaller 

9.2x faster 
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Outline 

•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability - PEGASUS 

– Structure Analysis 
– Eigensolver 
– Graph Layout and Compression 

•  Conclusions 

SIGMOD'12 
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Background: Eigensolver


  Eigensolver 
  Given: (adjacency) matrix A, 
  Compute: top k eigenvalues and eigenvectors of A 
  Application: 

  SVD 

  triangle counting 

  spectral clustering  
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Problem Definition


  Q4: How to design a billion-scale eigensolver? 
  Existing eigensolver: can handle millions of nodes a

nd edges 



Faloutsos and Kang (CMU)
 44
SIGMOD’12 

Efficient Eigensolver 

  Lanczos Iterations 

1 matrix-vector multiplication  
per iteration 



Faloutsos and Kang (CMU)
 45
SIGMOD’12 

Proposed Method 

  HEigen algorithm (Hadoop Eigen-solver) 
  Selectively parallelize ‘Lanczos-SO’ algorithm 
  Block encoding 
  Exploiting skewness in matrix-matrix mult. 

  (m >> n > k) 

x 
≈
 ≈
 ≈
 ≈


m x k m x n n x k 
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Skewed Matrix-Matrix  
Mult. 

  Multiply Qn
mxn and Hnxk    (m >> n > k) 

  Naïve multiplication: too expensive 
  Proposed: 

  `cache’-based multiplication: broadcast the small matri
x H to all the machines that contains Qn 

x 

A’s 
Eigenvector 

Qn H 

Qn: O(100 Gbytes) 
H: O(Kbytes) 

≈
 ≈
 ≈
 ≈


m x k m x n n x k 
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Skewed Matrix-Matrix  
Mult. 

  `cache’-based multiplication: broadcast the small 
matrix H to all the machines that contains Qn 

Map 0 Map 1 Map 2 

Reduce 0 Reduce 1 

Shuffle 

HDFS 

Qn
(1/3) Qn

(2/3) Qn
(3/3) 

H H H 

x 

A’s 
Eigenvector 

Qn H 

≈
 ≈
 ≈
 ≈


m x k m x n n x k 
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Skewed Matrix-Matrix Mult. 

Cache-based MM runs 76x faster 

Which Matrix-Matrix multiplication  
algorithm runs the fastest? 

MM: naïve mat-mat mult. 
IMV: naïve iterative mat-vec mult. 
CBMV: cache-based iterative mat-vec mult. 
CBMM: cache-based mat-mat mult. 
(100 machines used) 

76x faster 
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Outline 

•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability - PEGASUS 

– Structure Analysis 
– Eigensolver 
– Graph Layout and Compression 

•  Conclusions 

SIGMOD'12 
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Node Order Matters


  A graph and the adjacency matrix

4 2 

12 

10 8 

6 11 

3 1 

9 7 

5 
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Node Order Matters


  Same graphs with different orderings

1 2 

3 

4 5 

6 7 

11 12 

8 9 

10 

4 2 

12 

10 8 

6 11 

3 1 

9 7 

5 
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Good ordering = Good compression


  Same graphs with different orderings

1 2 

3 

4 5 

6 7 

11 12 

8 9 

10 

4 2 

12 

10 8 

6 11 

3 1 

9 7 

5 

Many 
sparse 
blocks


Few 
dense 
blocks
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Application


  Block-based matrix-vector multiplication


Few, dense blocks  
=> Better compression, faster running time 

Adjacency 
Matrix 

Vector 
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Problem Definition


  Given a graph, how can we lay-out its edges so th
at nonzero elements are well-clustered? 

  Better clustering = better compression 

Many 
sparse 
blocks


Few 
dense 
blocks
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Main Result


Original
 SlashBurn
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Outline 

•  … 
•  Problem#3: Scalability - PEGASUS 

– Structure Analysis 
– Eigensolver 
– Graph Layout and Compression 

•  Proposed Method 
•  Results 

•  Conclusions 

SIGMOD'12 
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Survey


  Given a graph, how can we lay-out its edges so th
at nonzero elements are well-clustered? 
1) Graph based clustering 

  Normalized cut, spectral clustering 

2) Heuristics 
  Lexicographic ordering for Web 
  Shingle ordering 
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1) Graph Based Clustering


  Goal: find homogeneous sets of nodes from graph
s 
  E.g.) Spectral clustering and normalized cut 
  Many intra-edges, few inter-edges 

Caveman Communities 
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1) Graph Based Clustering


  Goal: find homogeneous sets of nodes from graph
s 
  E.g.) Spectral clustering and normalized cut 
  Many intra-edges, few inter-edges 

Caveman Communities 
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1) Graph Based Clustering


  But, real graphs: no good cuts 
  [Tauro+ 01], [Siganos+ 06], [Chakrabarti +04], [Lesko

vec+ 08] 
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1) Graph Based Clustering


  But, real graphs: no good cuts 
  [Tauro+ 01], [Siganos+ 06], [Chakrabarti +04], [Lesko

vec+ 08] 

?
 ?
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1) Graph Based Clustering


  But, real graphs: no good cuts 
  [Tauro+ 01], [Siganos+ 06], [Chakrabarti +04], [Lesko

vec+ 08] 

  What should we do? 

?
 ?
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2) Older Heuristics


  Web graph: lexicographic ordering [Boldi+, 04] 
  Locality : many intra edges between neighbors 
  Similarity : out links of neighbors are similar  

  Social network: shingle ordering [Chierichetti+ 09
] 
  Group nodes with similar our-neighbors 
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Summary : Previous Works


  Tries to find homogenous regions for graph comp
ression 
  Fails to find them, because they often don’t exist


?
 ?
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Our Observation


  Caveman assumption 
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Our Observation


  Caveman assumption: wrong! 
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Our Solution


  Caveman assumption: wrong! 

  Instead, we envision graphs as  
    nodes connected by  
    connectors connected by  
    super connectors… 

… 
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Our Solution


  Instead, we envision graphs as  
    nodes connected by  
    connectors connected by  
    super connectors… 

  Use “Graph Shattering” to `peel’ the graphs from 
    super connectors, and then 
    connectors, 
    …


… 
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Graph Shattering


  k-shattering of a graph G 
  Removes top k connectors and their incidents edges fro

m G 
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Graph Shattering


Before shattering 
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Graph Shattering


Before shattering After shattering 
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Graph Shattering


  Observations in real graphs 
O1. Portion of GCC is much smaller after shattering 
O2. A lot of disconnected components


After shattering 

O1 

O2 

(connectors)


(connectors)


islands


islands
hermites
b.i.


hermites


b.i.
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Slash-Burn method (intuition)


  ‘burn’ the top k connectors, and ‘slash’ the edges 
  Move k connectors to the front of the row/column, 
              sort connected components by decr. size 
  Recurse on the remaining GCC 

(connectors)


(connectors)
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Outline 

•  … 
•  Problem#3: Scalability - PEGASUS 

– Structure Analysis 
– Eigensolver 
– Graph Layout and Compression 

•  Proposed Method 
•  Results 

•  Conclusions 

SIGMOD'12 
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Goal of Experiments


  [Q1] Compression savings? 

  [Q2] Running time savings? 
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A1. Compression
 Winner
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A1. Compression


  Cost functions used 
1) Number of non-empty blocks 
2) Information theoretic cost : minimum bits to encode no
nzero elements inside blocks 

|T|: # of nonempty blocks 
n: # of nodes 
b: block width 
H(): Shannon entropy func
.


model 
complexity


costs 
given the model
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A1. Compression


  Cost comparison


•  SlashBurn outperforms all competitors for all dataset! 
(smallest number of nonempty blocks, as well as bits per edge) 

better
better
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A2. Running Time


•  SlashBurn outperforms all competitors ! 
(running time as well as file size) 



CMU SCS 

Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability - PEGASUS 
•  Conclusions 

ECML/PKDD'10 C. Faloutsos (CMU) 80 
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Conclusions 

  PEGASUS: Peta-Scale Graph Mining System 
  Patterns and anomalies in large graphs 

  PageRank, Connected Components, Radius, Eigensolver 
  Outreach 

   Microsoft : part of Hadoop distribution for Windows Azure 
   One of the core systems for several DARPA projects (ADA

MS, INARC, DTRA) 

www.cs.cmu.edu/~pegasus 
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Conclusions 

  High impact applications require large graph mini
ng 

Cyber  
Security 

Fraud 
Detection 

Social 
Network 

Search 
Engine 

Health 
Care 
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Thank you ! 

log(degree) 
att.com 

ibm.com 

www.cs.cmu.edu/~pegasus 

Complementary tutorial: Mining Billion-Scale Graphs:  
Systems and Implementations: Haixun Wang et al 


