
Mining Billion-Scale Graphs:
Patterns and Algorithms

Christos Faloutsos
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213 USA
christos@cs.cmu.edu

U Kang
Carnegie Mellon University

5000 Forbes Ave
Pittsburgh, PA 15213 USA
ukang@cs.cmu.edu

ABSTRACT
Graphs are everywhere: social networks, the World Wide
Web, biological networks, and many more. The sizes of
graphs are growing at unprecedented rate, spanning millions
and billions of nodes and edges. What are the patterns in
large graphs, spanning Giga, Tera, and heading toward Peta
bytes? What are the best tools, and how can they help us
solve graph mining problems? How do we scale up algo-
rithms for handling graphs with billions of nodes and edges?
These are exactly the goals of this tutorial. We start with the
patterns in real-world static, weighted, and dynamic graphs.
Then we describe important tools for large graph mining,
including singular value decomposition, and Hadoop. Fi-
nally, we conclude with the design and the implementation
of scalable graph mining algorithms on Hadoop.

This tutorial is complementary to the related tutorial
”Managing and Mining Large Graphs: Systems and Imple-
mentations”.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining

General Terms
Design, Experimentation, Algorithms

Keywords
Graph Mining, MapReduce, Hadoop

1. INTRODUCTION
Graphs are everywhere: social networks, computer net-

works, mobile call networks, the World Wide Web [2], pro-
tein interaction networks, and many more. The lower cost
of disk storage, the success of social networking websites
and web 2.0 applications, and the high availability of data
sources lead to graphs being generated at unprecedented

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

size. They are now measured in Terabytes or even Petabytes,
with millions and billions of nodes and edges.

Finding patterns on large graphs have a lot of applications
including cyber security [16], social network analysis (Face-
book, Twitter) [9], and fraud detection [4], among others.
This tutorial exactly addresses the problem of finding pat-
terns on large graphs. Specifically, we address the following
questions: What are the patterns in large graphs? What
are the useful tools for large graph mining? How to scale up
graph mining algorithms for large graphs? We provide pat-
terns, tools, and scalable algorithms for mining large graphs.

We start with the patterns in real-world static, weighted,
and dynamic graphs. Then we describe important tools for
large graph mining, including singular value decomposition
and Hadoop. Finally, we conclude with the design and
the implementation of scalable graph mining algorithms on
Hadoop.

2. TUTORIAL OUTLINE
Our tutorial consists of three parts: patterns, tool, and

scalable algorithms.

• Patterns in large static, weighted, and dynamic graphs.
• Tools for large graph mining, including singular value

decomposition and Hadoop.
• Scalable algorithms for large graph mining on Hadoop,

including structure analysis, eigensolver, storage/indexing,
and graph layout/compression.

2.1 Patterns in Large Graphs
Real graphs obey several patterns, clearly deviating from

random graphs (the so-called ‘Erdős-Rényi’ graphs). What
are the distinguishing characteristics of real graphs? What
rules and patterns hold for them? When can we say that
two different graphs are similar to each other? To answer
these questions, we need to have some basic set of graph
attributes; these would be our vocabulary in which we can
discuss different graph types. We describe three types of
patterns: static, weighted, and dynamic graphs.

Static Graphs. Real graphs have relatively small di-
ameter, with the majority of nodes have small radii while
few nodes (marked ‘whiskers’) have large radii, as shown
in Figure 1 (a). It means that the distances of nodes in
real graphs are much smaller than expected. Another pat-
tern is the power laws in real graphs. The degree distri-
bution follow a power-law in the form of f(d) ∝ dγ , where
d is the degree and f(d) is the number of nodes with such
degree, with the exponent γ < 0 [3, 6]. The number of

(a) Radius plot of (b) Connected components of (c) Triangle counts in
YahooWeb YahooWeb Twitter

Figure 1: Patterns and anomalies in large graphs. (a) Radius plot of YahooWeb graph, a Web snapshot at
year 2002 containing 1.6 billion pages and 6.6 billion edges. Notice the effective diameter is surprisingly small,
and the few whiskers which have large radii. (b) Connected components size distribution of the YahooWeb.
Notice the two anomalous spikes which deviate significantly from the constant-slope power law line. (c) The
degree vs. participating triangles of some ‘celebrities’ in Twitter who follows whom snapshot at year 2009.
Also shown are accounts of adult site advertisers which have smaller degree, but belong to an abnormally
large number of triangles. The reason of the large number of triangles is that adult accounts are often from
the same provider, and they follow each other to form a clique, to possibly boost their rankings or popularity.

participating triangles [20], eigenvalues of the graph adja-
cency matrix [19], and the sizes of non giant connected com-
ponents [11] follow the power law, too. An application of
these features is the anomaly detection on graphs. For ex-
ample, the connected components size distribution plot in
Figure 1 (b) shows two anomalous spikes which deviate from
the constant-slope tails. Another example is the number
of participating triangles vs. degree plot in Figure 1 (c)
which clearly shows anomalous adult advertisers which con-
tain much larger number of triangles compared to some U.S.
politicians.

Weighted Graphs. The total weight of the edges Wn

attached to each node and the number of such edges, that is,
the degree dn, follow a power-law in the form of Wn ∝ dθn,
with θ > 1 [17].

Dynamic Graphs. Patterns in dynamic graphs are ob-
served in time evolving graphs. The (effective) diameter of
graphs shrink over time [15]. Also, the number of nodes N(t)
and the number of edges E(t) at time t follow a power-law
in the form of E(t) ∝ N(t)α, with α > 1, over time [15].
Finally, the sizes of connected components show interesting
pattern: while the giant connected component keeps grow-
ing, the secondary and tertiary connected components tend
to remain constant in size with small oscillations [17].

2.2 Tools for Large Graph Mining
What tools can we use for large graph mining? We de-

scribe the two of the most important tools, namely singular
value decomposition and Hadoop, a large scale data pro-
cessing platform.

Singular Value Decomposition. Singular Value De-
composition (SVD) is an important tool for finding concepts
and reducing dimensions in graphs as well as matrices [7, 1].
We describe the motivation, definition, and various applica-
tions including text clustering, compression, rule discovery,
steady-state probabilities computation, and solving linear
systems.

Hadoop. Large scale graph mining poses challenges in
dealing with massive amount of data: they exceed memory

and even disks of a single machine. A promising alterna-
tive for large graph mining is MapReduce [5], a parallel
programming framework for processing web-scale data, and
its open-source version Hadoop. MapReduce has two ad-
vantages. First, the data distribution, replication, fault-
tolerance, and load balancing are handled automatically.
Second, it uses the familiar concept of functional program-
ming: the programmer needs to define only two functions, a
map and a reduce. We describe the preliminaries on Hadoop
for large graph mining.

2.3 Scalable Algorithms for Large Graph Min-
ing

How to scale up the algorithms for mining very large
graphs which do not fit in memory, or disks of a single ma-
chine? How to use parallelism? We describe how to design
and implement such algorithms on Hadoop. The algorithms
are general and cover diverse cases including the structural
analysis, eigensolver, storage/indexing, and compression.

Structure Analysis. How can we find connected com-
ponents, diameter, PageRank, and node proximities of very
large graphs quickly? Furthermore, how can we design a
general primitive which can be applied to many different al-
gorithms? We describe GIM-V (Generalized Iterative Matrix-
Vector multiplication) [11, 14], an important primitive which
unifies many seemingly different algorithms including con-
nected components, diameter [12, 13], PageRank, and node
proximities. We also describe how to develop fast algorithms
for GIM-V on MapReduce framework.

Eigensolver. Given a billion-scale graph, how can we
find near-cliques, the count of triangles, and related graph
properties? All of them can be found quickly if we have the
first several eigenvalues and eigenvectors of the adjacency
matrix of the graph [20, 18]. Despite their importance, how-
ever, existing eigensolvers do not scale well. We introduce
HEigen [9], an eigensolver for billion-scale, sparse matrices.
We describe the design decisions and fast algorithms that
enable the scalable billion-scale eigensolver.

Storage and Indexing. How to store and index graph

edge files so that graph mining queries can be answered
quickly? Graph storage and indexing are important espe-
cially for targeted graph mining queries whose answers re-
quire the access to only parts of the graph. Examples of
targeted queries include k-step in/out-neighbors, and egonet
queries. We describe how to store and index the nonzero
elements in the adjacency matrix of the graphs to quickly
answer graph mining queries [10].

Graph Layout and Compression. Given a real world
graph, how should we lay-out its edges? How can we com-
press it? These questions are closely related, and the typical
approach so far is to find clique-like communities, like the
‘cavemen graph’, and compress them. We show that the
block-diagonal mental image of the ‘cavemen graph’ is the
wrong paradigm, in full agreement with earlier results that
real world graphs have no good cuts. We describe the re-
cent development for graph compression, called SlashBurn
method [8] which has several advantages: (a) it avoids the
‘no good cuts’ problem, (b) it gives better compression, and
(c) it leads to faster execution times for matrix-vector op-
erations, which are the back-bone of most graph processing
tools [11, 14].

3. REFERENCES
[1] M. W. Berry. Large scale singular value computations.

International Journal of Supercomputer Applications,
1992.

[2] A. Broder, R. Kumar, F. Maghoul, P. Raghavan,
S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener.
Graph structure in the web. Computer Networks 33,
2000.

[3] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT:
A recursive model for graph mining. SIAM Int. Conf.
on Data Mining, Apr. 2004.

[4] D. H. Chau, S. Pandit, and C. Faloutsos. Detecting
fraudulent personalities in networks of online
auctioneers. PKDD, 2006.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages
137–150, 2004.

[6] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On
power-law relationships of the internet topology.
SIGCOMM, pages 251–262, Aug-Sept. 1999.

[7] M. Kamel. Computing the singular value
decomposition in image processing. In Proceedings of
Conference on Information Systems, Princeton, 1984.

[8] U. Kang and C. Faloutsos. Beyond ‘caveman
communities’: Hubs and spokes for graph compression
and mining. In ICDM, 2011.

[9] U. Kang, B. Meeder, and C. Faloutsos. Spectral
analysis for billion-scale graphs: Discoveries and
implementation. In PAKDD (2), pages 13–25, 2011.

[10] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and
C. Faloutsos. Gbase: a scalable and general graph
management system. In KDD, pages 1091–1099, 2011.

[11] U. Kang, C. Tsourakakis, and C. Faloutsos. Pegasus:
A peta-scale graph mining system - implementation
and observations. ICDM, 2009.

[12] U. Kang, C. E. Tsourakakis, A. P. Appel,
C. Faloutsos, and J. Leskovec. Radius plots for mining
tera-byte scale graphs: Algorithms, patterns, and
observations. In SDM, pages 548–558, 2010.

[13] U. Kang, C. E. Tsourakakis, A. P. Appel,
C. Faloutsos, and J. Leskovec. Hadi: Mining radii of
large graphs. ACM Trans. Knowl. Discov. Data,
5:8:1–8:24, February 2011.

[14] U. Kang, C. E. Tsourakakis, and C. Faloutsos.
Pegasus: mining peta-scale graphs. Knowl. Inf. Syst.,
27(2):303–325, 2011.

[15] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs
over time: densification laws, shrinking diameters and
possible explanations. In KDD, pages 177–187, 2005.

[16] K. Maruhashi, F. Guo, and C. Faloutsos.
Multiaspectforensics: Pattern mining on large-scale
heterogeneous networks with tensor analysis. In
ASONAM, pages 203–210, 2011.

[17] M. Mcglohon, L. Akoglu, and C. Faloutsos. Weighted
graphs and disconnected components: patterns and a
generator. KDD, pages 524–532, 2008.

[18] B. A. Prakash, M. Seshadri, A. Sridharan,
S. Machiraju, and C. Faloutsos. Eigenspokes:
Surprising patterns and community structure in large
graphs. PAKDD, 2010.

[19] G. Siganos, M. Faloutsos, P. Faloutsos, and
C. Faloutsos. Power-laws and the AS-level internet
topology. IEEE/ACM Transactions on Networking,
11(4):514–524, 2003.

[20] C. Tsourakakis. Fast counting of triangles in large real
networks without counting: Algorithms and laws. In
ICDM, 2008.

	Introduction
	Tutorial Outline
	Patterns in Large Graphs
	Tools for Large Graph Mining
	Scalable Algorithms for Large Graph Mining

	References

