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Roadmap 

•  Introduction – Motivation 
– Why study (big) graphs? 

•  Part#1: Patterns in graphs 
•  Part#2: Cascade analysis 
•  Conclusions 
•  [Extra: ebay fraud; tensors; spikes] 

ASONAM 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

>$10B revenue 

>0.5B users 

ASONAM 
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Graphs - why should we care? 
•  web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic and 

anomaly detection 
•  Recommendation systems 
•  .... 

•  Many-to-many db relationship -> graph 

ASONAM 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Static graphs 
– Time-evolving graphs 
– Why so many power-laws? 

•  Part#2: Cascade analysis 
•  Conclusions 

ASONAM 
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Part 1: 
Patterns & Laws 
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Laws and patterns 
•  Q1: Are real graphs random? 

ASONAM 
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Laws and patterns 
•  Q1: Are real graphs random? 
•  A1: NO!! 

– Diameter 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  Q2: why ‘no good cuts’? 
•  A2: <self-similarity – stay tuned> 

•  So, let’s look at the data 
ASONAM 
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Solution# S.1 

•  Power law in the degree distribution 
[SIGCOMM99] 

log(rank) 

log(degree) 

internet domains 

att.com 

ibm.com 

ASONAM 
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Solution# S.1 

•  Power law in the degree distribution 
[SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

ASONAM 
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Solution# S.1 

•  Q: So what? 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

ASONAM 



CMU SCS 

(c) 2013, C. Faloutsos 12 

Solution# S.1 

•  Q: So what? 
•  A1: # of two-step-away pairs: 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

ASONAM 

= friends of friends (F.O.F.) 
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Solution# S.1 

•  Q: So what? 
•  A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

ASONAM 

~0.8PB -> 
a data center(!) 

DCO @ CMU 

Gaussian trap 

= friends of friends (F.O.F.) 
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Solution# S.1 

•  Q: So what? 
•  A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

ASONAM 

~0.8PB -> 
a data center(!) 

Gaussian trap 
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Solution# S.2: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency 
matrix 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

ASONAM 

A x = λ x 
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  Triangles 

– Time evolving graphs 
•  Problem#2: Tools 

ASONAM 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles  

ASONAM 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles 
–  Friends of friends are friends  

•  Any patterns? 
–  2x the friends, 2x the triangles ? 

ASONAM 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

ASONAM 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) – O(dmax

2) 
Q: Can we do that quickly? 
A: 

details 

ASONAM 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) – O(dmax

2) 
Q: Can we do that quickly? 
A: Yes! 

 #triangles = 1/6 Sum ( λi
3 ) 

      (and, because of skewness (S2) ,  
 we only need the top few eigenvalues! - O(E) 

details 

ASONAM 

A x = λ x 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

22 ASONAM 22 (c) 2013, C. Faloutsos 

? ? 

? 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

23 ASONAM 23 (c) 2013, C. Faloutsos 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

24 ASONAM 24 (c) 2013, C. Faloutsos 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

25 ASONAM 25 (c) 2013, C. Faloutsos 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Static graphs 
•  Power law degrees; eigenvalues; triangles 
•  Anti-pattern: NO good cuts! 

– Time-evolving graphs 
•  …. 
•  Conclusions 

ASONAM 
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Background: Graph cut problem 

•  Given a graph, and k 
•  Break it into k (disjoint) communities 
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Graph cut problem 

•  Given a graph, and k 
•  Break it into k (disjoint) communities 
•  (assume: block diagonal = ‘cavemen’ graph) 

k = 2 
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Many algo’s for graph partitioning 
•  METIS [Karypis, Kumar +] 
•  2nd eigenvector of Laplacian 
•  Modularity-based [Girwan+Newman] 
•  Max flow [Flake+] 
•  … 
•  … 
•  … 

ASONAM (c) 2013, C. Faloutsos 29 
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Strange behavior of min cuts 

•  Subtle details: next 
– Preliminaries: min-cut plots of ‘usual’ graphs 

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,  
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 
Workshop on Link Analysis, Counter-terrorism and Privacy 

Statistical Properties of Community Structure in Large Social and 
Information Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney.  
WWW 2008.  
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“Min-cut” plot 
•  Do min-cuts recursively. 

log (# edges) 

log (mincut-size / #edges) 

N nodes 

Mincut size 
= sqrt(N) 
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“Min-cut” plot 
•  Do min-cuts recursively. 

log (# edges) 

log (mincut-size / #edges) 

N nodes 

New min-cut 
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“Min-cut” plot 
•  Do min-cuts recursively. 

log (# edges) 

log (mincut-size / #edges) 

N nodes 

New min-cut 

Slope = -0.5 

Better 
cut 
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“Min-cut” plot 

log (# edges) 

log (mincut-size / #edges) 

Slope = -1/d 

For a d-dimensional 
grid, the slope is -1/d 

log (# edges) 

log (mincut-size / #edges) 

For a random graph 

(and clique), 

 the slope is 0 
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Experiments 
•  Datasets: 

–  Google Web Graph: 916,428 nodes and 
5,105,039 edges 

–  Lucent Router Graph: Undirected graph of 
network routers from 
www.isi.edu/scan/mercator/maps.html; 112,969 
nodes and 181,639 edges 

–  User  Website Clickstream Graph: 222,704 
nodes and 952,580 edges 

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,  
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 
Workshop on Link Analysis, Counter-terrorism and Privacy 



CMU SCS 

ASONAM (c) 2013, C. Faloutsos 36 

“Min-cut” plot 
•  What does it look like for a real-world 

graph? 

log (# edges) 

log (mincut-size / #edges) 

? 
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Experiments 
•  Used the METIS algorithm [Karypis, Kumar, 

1995] 

-9-8-7-6-5-4-3-2-100510152025log(mincut/edges)log(edges)google-averaged"Lip"

log (# edges) 

lo
g 
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•  Google Web graph 

•  Values along the y-
axis are averaged 

•  “lip” for large # edges 

•  Slope of -0.4, 
corresponds to a 2.5-
dimensional grid! 

Slope~ -0.4 

log (# edges) 

log (mincut-size / #edges) 
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Experiments 
•  Used the METIS algorithm [Karypis, Kumar, 

1995] 
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•  Google Web graph 

•  Values along the y-
axis are averaged 

•  “lip” for large # edges 

•  Slope of -0.4, 
corresponds to a 2.5-
dimensional grid! 

Slope~ -0.4 

log (# edges) 

log (mincut-size / #edges) 

Better 
cut 
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Experiments 
•  Same results for other graphs too… 

-8-7-6-5-4-3-2-10024681012141618log(mincut/edges)log(edges)lucent-averaged

-4.5-4-3.5-3-2.5-2-1.5-1-0.5002468101214161820log(mincut/edges)log(edges)clickstream-averaged
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Lucent Router graph Clickstream graph 

Slope~ -0.57 Slope~ -0.45 
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Why no good cuts? 
•  Answer: self-similarity (few foils later) 

ASONAM (c) 2013, C. Faloutsos 40 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Static graphs 
– Time-evolving graphs 
– Why so many power-laws? 

•  Part#2: Cascade analysis 
•  Conclusions 

ASONAM 
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Problem: Time evolution 
•  with Jure Leskovec (CMU -> 

Stanford) 

•   and Jon Kleinberg (Cornell – 
sabb. @ CMU) 

ASONAM 

Jure Leskovec, Jon Kleinberg and Christos Faloutsos: Graphs 
over Time: Densification Laws, Shrinking Diameters and Possible 
Explanations, KDD 2005 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  [diameter ~ O( N1/3)] 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 

ASONAM 

diameter 
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T.1 Evolution of the Diameter 
•  Prior work on Power Law graphs hints 

at   slowly growing diameter: 
–  [diameter ~ O( N1/3)] 
–  diameter ~ O(log N) 
–  diameter ~ O(log log N) 

•  What is happening in real data? 
•  Diameter shrinks over time 

ASONAM 
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T.1 Diameter – “Patents” 

•  Patent citation 
network 

•  25 years of data 
•  @1999 

–  2.9 M nodes 
–  16.5 M edges 

time [years] 

diameter 

ASONAM 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 

ASONAM 

Say, k friends on average 

k 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 
•  A: over-doubled! ~ 3x 

– But obeying the ``Densification Power Law’’ 
ASONAM 

Say, k friends on average 

Gaussian trap 
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T.2 Temporal Evolution of the 
Graphs 

•  N(t) … nodes at time t 
•  E(t) … edges at time t 
•  Suppose that 

  N(t+1) = 2 * N(t) 
•  Q: what is your guess for  

  E(t+1) =? 2 * E(t) 
•  A: over-doubled! ~ 3x 

– But obeying the ``Densification Power Law’’ 
ASONAM 

Say, k friends on average 

Gaussian trap 

✗ ✔ 
log 

log 

lin 

lin 
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T.2 Densification – Patent 
Citations 

•  Citations among 
patents granted 

•  @1999 
–  2.9 M nodes 
–  16.5 M edges 

•  Each year is a 
datapoint 

N(t) 

E(t) 

1.66 

ASONAM 
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RTG: A Recursive Realistic Graph Generator using Random 
Typing Leman Akoglu and Christos Faloutsos. PKDD’09.  
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✔ 

✔ 
✔ 
✔ 

✔ 

RTG: A Recursive Realistic Graph Generator using Random 
Typing Leman Akoglu and Christos Faloutsos. PKDD’09.  
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•  Mary McGlohon, Leman Akoglu, Christos 
Faloutsos. Statistical Properties of Social 
Networks. in "Social Network Data Analytics” (Ed.: 
Charu Aggarwal) 

•  Deepayan Chakrabarti and Christos Faloutsos, 
Graph Mining: Laws, Tools, and Case Studies Oct. 
2012, Morgan Claypool.  
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– … 
– Why so many power-laws? 
– Why no ‘good cuts’? 

•  Part#2: Cascade analysis 
•  Conclusions 

ASONAM 
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2 Questions, one answer 
•  Q1: why so many power laws 
•  Q2: why no ‘good cuts’? 

ASONAM (c) 2013, C. Faloutsos 54 
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2 Questions, one answer 
•  Q1: why so many power laws 
•  Q2: why no ‘good cuts’? 
•  A: Self-similarity =  fractals = ‘RMAT’ ~ 

‘Kronecker graphs’ 

ASONAM (c) 2013, C. Faloutsos 55 

possible 
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20’’ intro to fractals 
•  Remove the middle triangle; repeat 
•  -> Sierpinski triangle 
•  (Bonus question - dimensionality? 

– >1 (inf. perimeter – (4/3)∞ ) 
– <2 (zero area – (3/4) ∞ ) 

ASONAM (c) 2013, C. Faloutsos 56 

… 
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20’’ intro to fractals 

ASONAM (c) 2013, C. Faloutsos 57 

Self-similarity -> no char. scale 
-> power laws, eg: 
2x the radius,  
3x the #neighbors nn(r) 
      nn(r) = C r log3/log2 
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20’’ intro to fractals 
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Self-similarity -> no char. scale 
-> power laws, eg: 
2x the radius,  
3x the #neighbors nn(r) 
      nn(r) = C r log3/log2 
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20’’ intro to fractals 

ASONAM (c) 2013, C. Faloutsos 59 

Self-similarity -> no char. scale 
-> power laws, eg: 
2x the radius,  
3x the #neighbors 
      nn = C r log3/log2 

N(t) 

E(t) 

1.66 

Reminder: 
Densification P.L. 
(2x nodes, ~3x edges) 
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20’’ intro to fractals 
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Self-similarity -> no char. scale 
-> power laws, eg: 
2x the radius,  
3x the #neighbors 
      nn = C r log3/log2 

2x the radius, 
4x neighbors 

nn = C r log4/log2 = C r 2  
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20’’ intro to fractals 
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Self-similarity -> no char. scale 
-> power laws, eg: 
2x the radius,  
3x the #neighbors 
      nn = C r log3/log2 

2x the radius, 
4x neighbors 

nn = C r log4/log2 = C r 2  

Fractal dim. 

=1.58 



CMU SCS 

20’’ intro to fractals 
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Self-similarity -> no char. scale 
-> power laws, eg: 
2x the radius,  
3x the #neighbors 
      nn = C r log3/log2 

2x the radius, 
4x neighbors 

nn = C r log4/log2 = C r 2  

Fractal dim. 
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How does self-similarity help in 

graphs? 
•  A: RMAT/Kronecker generators 

– With self-similarity, we get all power-laws, 
automatically, 

– And small/shrinking diameter 
– And `no good cuts’ 

ASONAM (c) 2013, C. Faloutsos 63 

R-MAT: A Recursive Model for Graph Mining,  
by D. Chakrabarti, Y. Zhan and C. Faloutsos,  
SDM 2004, Orlando, Florida, USA 
Realistic, Mathematically Tractable Graph Generation  
and Evolution, Using Kronecker Multiplication, 
by J. Leskovec, D. Chakrabarti, J. Kleinberg,  
and C. Faloutsos, in PKDD 2005, Porto, Portugal  



CMU SCS 

ASONAM (c) 2013, C. Faloutsos 64 

Graph gen.: Problem dfn 
•  Given a growing graph with count of nodes N1, 

N2, … 
•  Generate a realistic sequence of graphs that will 

obey all the patterns  
–  Static Patterns 

 S1 Power Law Degree Distribution 
 S2 Power Law eigenvalue and eigenvector distribution 
      Small Diameter 

–  Dynamic Patterns 
 T2 Growth Power Law (2x nodes; 3x edges) 
 T1 Shrinking/Stabilizing Diameters 
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Kronecker Graphs 

Intermediate stage 

Adjacency matrix 
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Kronecker Graphs 

Intermediate stage 

Adjacency matrix 
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Kronecker Graphs 

Intermediate stage 

Adjacency matrix 
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Kronecker Graphs 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 
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Kronecker Graphs 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 
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Kronecker Graphs 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 
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Kronecker Graphs 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 

Holes within holes; 
Communities  

within communities 
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Properties: 

•  We can PROVE that 
– Degree distribution is multinomial ~ power law 
– Diameter: constant 
– Eigenvalue distribution: multinomial 
– First eigenvector: multinomial 

new 

Self-similarity -> power laws 
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Problem Definition 
•  Given a growing graph with nodes N1, N2, … 
•  Generate a realistic sequence of graphs that will obey all 

the patterns  
–  Static Patterns 

 Power Law Degree Distribution 
 Power Law eigenvalue and eigenvector distribution 
 Small Diameter 

–  Dynamic Patterns 
 Growth Power Law 
 Shrinking/Stabilizing Diameters 

•  First generator for which we can prove all these 
properties 

 
 
 

 
 
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Impact: Graph500 
•  Based on RMAT (= 2x2 Kronecker) 
•  Standard for graph benchmarks 
•  http://www.graph500.org/ 
•  Competitions 2x year, with all major 

entities: LLNL, Argonne, ITC-U. Tokyo, 
Riken, ORNL, Sandia, PSC, … 

ASONAM (c) 2013, C. Faloutsos 74 

R-MAT: A Recursive Model for Graph Mining,  
by D. Chakrabarti, Y. Zhan and C. Faloutsos,  
SDM 2004, Orlando, Florida, USA 

To iterate is human, to recurse is devine 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– … 
– Q1: Why so many power-laws? 
– Q2: Why no ‘good cuts’? 

•  Part#2: Cascade analysis 
•  Conclusions 

ASONAM 

A: real graphs ->  
    self similar -> 
    power laws 
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Q2: Why ‘no good cuts’? 
•  A: self-similarity 

– Communities within communities within 
communities … 

ASONAM (c) 2013, C. Faloutsos 76 
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Kronecker Product – a Graph 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 

REMINDER 
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Kronecker Product – a Graph 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 

REMINDER 

Communities within  
communities within  
communities … 

‘Linux users’ 

‘Mac users’ 

‘win users’ 
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Kronecker Product – a Graph 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 

REMINDER 

Communities within  
communities within  
communities … 

How many  
Communities? 
3? 
9? 
27? 
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Kronecker Product – a Graph 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 

REMINDER 

Communities within  
communities within  
communities … 

How many  
Communities? 
3? 
9? 
27? 

A: one – but 
not a typical,  
block-like 
community… 
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Communities? (Gaussian) 
Clusters? 

Piece-wise  
flat parts? 

age 

# songs 



CMU SCS 

ASONAM (c) 2013, C. Faloutsos 82 

Wrong questions to ask! 

age 

# songs 
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Summary of Part#1 
•  *many* patterns in real graphs 

– Small & shrinking diameters 
– Power-laws everywhere 
– Gaussian trap 
–  ‘no good cuts’ 

•  Self-similarity (RMAT/Kronecker): good 
model 

ASONAM (c) 2013, C. Faloutsos 83 
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Part 2: 
Cascades &  

Immunization 
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Why do we care? 
•  Information Diffusion 
•  Viral Marketing 
•  Epidemiology and Public Health 
•  Cyber Security 
•  Human mobility  
•  Games and Virtual Worlds  
•  Ecology 
•  ........ 

(c) 2013, C. Faloutsos 85 ASONAM 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 
•  Part#2: Cascade analysis 

–  (Fractional) Immunization 
– Epidemic thresholds 

•  Conclusions 

ASONAM 
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Fractional Immunization of Networks 
B. Aditya Prakash, Lada Adamic, Theodore  
Iwashyna (M.D.), Hanghang Tong, 

Christos Faloutsos 

SDM 2013, Austin, TX  

(c) 2013, C. Faloutsos 87 ASONAM 
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Whom to immunize? 
•  Dynamical Processes over networks 

• 	
  Each	
  circle	
  is	
  a	
  hospital	
  
• 	
  ~3,000	
  hospitals	
  
• 	
  More	
  than	
  30,000	
  pa4ents	
  
transferred	
  	
  	
  

[US-­‐MEDICARE	
  
NETWORK	
  2005]	
  

Problem:	
  Given	
  k	
  units	
  of	
  
disinfectant,	
  whom	
  to	
  immunize?	
  

(c) 2013, C. Faloutsos 88 ASONAM 



CMU SCS 

Whom to immunize? 

CURRENT	
  PRACTICE	
   OUR	
  METHOD	
  

[US-­‐MEDICARE	
  
NETWORK	
  2005]	
  

~6x 
fewer! 

(c) 2013, C. Faloutsos 89 ASONAM 

Hospital-acquired inf. : 99K+ lives, $5B+ per year 
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Fractional Asymmetric Immunization 

Hospital	
   Another	
  
Hospital	
  

Drug-­‐resistant	
  Bacteria	
  
(like	
  XDR-­‐TB)	
  	
  

(c) 2013, C. Faloutsos 90 ASONAM 
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Hospital	
   Another	
  
Hospital	
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Fractional Asymmetric Immunization 

Hospital	
   Another	
  
Hospital	
  

Problem:	
  	
  
Given	
  k	
  units	
  of	
  disinfectant,	
  	
  
distribute	
  them	
  	
  
to	
  maximize	
  hospitals	
  saved	
  

(c) 2013, C. Faloutsos 93 ASONAM 



CMU SCS 

Fractional Asymmetric Immunization 

Hospital	
   Another	
  
Hospital	
  

Problem:	
  	
  
Given	
  k	
  units	
  of	
  disinfectant,	
  	
  
distribute	
  them	
  	
  
to	
  maximize	
  hospitals	
  saved	
  @	
  365	
  days	
  

(c) 2013, C. Faloutsos 94 ASONAM 
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Straightforward solution: 
Simulation: 
1.  Distribute resources 
2.  ‘infect’ a few nodes 
3.  Simulate evolution of spreading  

–  (10x, take avg) 
4.  Tweak, and repeat step 1 

ASONAM (c) 2013, C. Faloutsos 95 
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Running Time 

Simula4ons	
   SMART-­‐ALLOC	
  

>	
  1	
  week	
  
Wall-­‐Clock	
  

Time	
  
≈	
  

14	
  secs	
  

>	
  30,000x	
  
speed-­‐up!	
  

be?er	
  

(c) 2013, C. Faloutsos 99 ASONAM 
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Experiments  

K = 120 

be?er	
  

(c) 2013, C. Faloutsos 100 ASONAM 

# epochs 

# infected 
uniform 

SMART-ALLOC 
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What is the ‘silver bullet’? 
A: Try to decrease connectivity of graph 

Q: how to measure connectivity? 
– Avg degree? Max degree? 
– Std degree / avg degree ? 
– Diameter? 
– Modularity? 
–  ‘Conductance’ (~min cut size)? 
– Some combination of above? 

ASONAM (c) 2013, C. Faloutsos 101 

14	
  
secs	
  

>	
  
30,000x	
  
speed-­‐
up!	
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What is the ‘silver bullet’? 
A: Try to decrease connectivity of graph 

Q: how to measure connectivity? 
A: first eigenvalue of adjacency matrix 

Q1: why?? 
(Q2: dfn & intuition of eigenvalue ? ) 

ASONAM (c) 2013, C. Faloutsos 102 

Avg degree 
Max degree 
Diameter 
Modularity 
‘Conductance’ 
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Why eigenvalue? 
A1: ‘G2’ theorem and ‘eigen-drop’: 

•  For (almost) any type of virus 
•  For any network 
•  -> no epidemic, if small-enough first 

eigenvalue  (λ1 ) of adjacency matrix 

•  Heuristic: for immunization, try to min λ1 

•  The smaller λ1, the closer to extinction. 
ASONAM (c) 2013, C. Faloutsos 103 

Threshold Conditions for Arbitrary Cascade Models on 
Arbitrary Networks, B. Aditya Prakash, Deepayan 
Chakrabarti, Michalis Faloutsos, Nicholas Valler, 
Christos Faloutsos, ICDM 2011, Vancouver, Canada 
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Threshold Conditions for Arbitrary Cascade 
Models on Arbitrary Networks  
B. Aditya Prakash, Deepayan Chakrabarti, 
Michalis Faloutsos, Nicholas Valler, 
Christos Faloutsos 
IEEE ICDM 2011, Vancouver 

 extended version, in arxiv 
http://arxiv.org/abs/1004.0060 

G2 theorem 

~10 pages proof 
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Our thresholds for some models 
•  s = effective strength 
•  s < 1 : below threshold 

(c) 2013, C. Faloutsos 106 ASONAM 

Models Effective Strength 
(s) 

Threshold (tipping 
point) 

SIS, SIR, SIRS, 
SEIR s = λ .    

                s = 1  
SIV, SEIV s = λ .    

(H.I.V.) 
s = λ .    
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Our thresholds for some models 
•  s = effective strength 
•  s < 1 : below threshold 
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Models Effective Strength 
(s) 

Threshold (tipping 
point) 

SIS, SIR, SIRS, 
SEIR s = λ .    

                s = 1  
SIV, SEIV s = λ .    

(H.I.V.) 
s = λ .    

No 
immunity 

Temp. 
immunity 

w/ 
incubation 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 
•  Part#2: Cascade analysis 

–  (Fractional) Immunization 
–  intuition behind λ1 

•  Conclusions 

ASONAM 
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Intuition for λ 

“Official” definitions: 
•  Let A be the adjacency 

matrix. Then λ is the root 
with the largest magnitude of 
the characteristic polynomial 
of A [det(A – xI)]. 

•  Also:  A x = λ x 

Neither gives much intuition! 

“Un-official” Intuition  
•  For ‘homogeneous’ 

graphs, λ == degree 

•  λ ~ avg degree 
–  done right, for skewed 

degree distributions 

(c) 2013, C. Faloutsos 109 ASONAM 
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Largest Eigenvalue (λ) 

λ	
  ≈	
  2	
   λ	
  =	
  	
  	
  N	
   λ	
  =	
  N-­‐1	
  

N	
  =	
  1000	
  nodes	
  
λ	
  ≈	
  2	
   λ=	
  31.67	
   λ=	
  999	
  

beaer	
  connec4vity	
  	
  	
  	
  	
  	
  	
  	
  	
  higher	
  λ	
   �
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Examples: Simulations – SIR (mumps)  
Fr

ac
tio

n 
of

 In
fe

ct
io

ns
 

Fo
ot

pr
in

t 
Effective Strength Time ticks 

(c) 2013, C. Faloutsos 112 ASONAM 

(a) Infection profile                 (b) “Take-off” plot 
PORTLAND	
  graph:	
  syntheGc	
  populaGon,	
  	
  

31	
  million	
  links,	
  6	
  million	
  nodes	
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Examples: Simulations – SIRS 

(pertusis)  

Fr
ac

tio
n 

of
 In

fe
ct

io
ns

 

Fo
ot

pr
in

t 
Effective Strength Time ticks 
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 (a) Infection profile                 (b) “Take-off” plot 
PORTLAND	
  graph:	
  syntheGc	
  populaGon,	
  	
  

31	
  million	
  links,	
  6	
  million	
  nodes	
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Immunization - conclusion 
In (almost any) immunization setting, 
•  Allocate resources, such that to 
•  Minimize λ1 

•  (regardless of virus specifics) 

•  Conversely, in a market penetration setting 
– Allocate resources to 
– Maximize  λ1 

ASONAM (c) 2013, C. Faloutsos 114 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 
•  Part#2: Cascade analysis 

–  (Fractional) Immunization 
– Epidemic thresholds 

•  What next? 
•  Acks & Conclusions 
•  [Tools: ebay fraud; tensors; spikes] 
ASONAM 
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Challenge #1: ‘Connectome’ – 

brain wiring 

ASONAM (c) 2013, C. Faloutsos 116 

•  Which neurons get activated by ‘bee’ 
•  How wiring evolves 
•  Modeling epilepsy 
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N. Sidiropoulos 
George Karypis 

V. Papalexakis 

Tom Mitchell 
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Challenge#2: Time evolving 

networks / tensors 
•  Periodicities? Burstiness? 
•  What is ‘typical’ behavior of a node, over time 
•  Heterogeneous graphs (= nodes w/ attributes) 

ASONAM (c) 2013, C. Faloutsos 117 

… 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 
•  Part#2: Cascade analysis 

–  (Fractional) Immunization 
– Epidemic thresholds 

•  Acks & Conclusions 
•  [Tools: ebay fraud; tensors; spikes] 

ASONAM 

Off line 
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Thanks 

ASONAM 

Thanks to: NSF IIS-0705359, IIS-0534205,  
CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, 
Google, INTEL, HP, iLab 

Disclaimer: All opinions are mine; not necessarily reflecting 
the opinions of the funding agencies 
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Project info: PEGASUS 

ASONAM 

www.cs.cmu.edu/~pegasus 
Results on large graphs: with Pegasus + 

hadoop + M45 
Apache license 
Code, papers, manual, video 

Prof. U Kang Prof. Polo Chau 
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Cast 

Akoglu,  
Leman 

Chau,  
Polo 

Kang, U 

McGlohon,  
Mary 

Tong,  
Hanghang 

Prakash, 
Aditya 

ASONAM 

Koutra, 
Danai 

Beutel, 
Alex 

Papalexakis, 
Vagelis 
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CONCLUSION#1 – Big data 

•  Large datasets reveal patterns/outliers that 
are invisible otherwise 

ASONAM 
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CONCLUSION#2 – self-similarity 

•  powerful tool / viewpoint 
– Power laws; shrinking diameters 

– Gaussian trap (eg., F.O.F.) 

–  ‘no good cuts’ 

– RMAT – graph500 generator 

ASONAM 
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CONCLUSION#3 – eigen-drop 

•  Cascades & immunization: G2 theorem & 
eigenvalue 

ASONAM 

CURRENT	
  PRACTICE	
   OUR	
  METHOD	
  

[US-­‐MEDICARE	
  
NETWORK	
  2005]	
  

~6x 
fewer! 

14	
  
secs	
  

>	
  
30,000x	
  
speed-­‐
up!	
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ASONAM 
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TAKE HOME MESSAGE: 

Cross-disciplinarity 
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TAKE HOME MESSAGE: 

Cross-disciplinarity 
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QUESTIONS? 


