Large Graph Mining -Patterns, Explanations and Cascade Analysis

Christos Faloutsos CMU

Thank you!

- Foster Provost
- Sinan Aral
- Arun Sundararajan
- Shirley Lau
- Sara Gorecki

Graphs - why should we care?

>\$10B revenue >0.5B users

Food Web [Martinez '91]

Internet Map [lumeta.com]

WIN workshop, NYU

(c) 2013, C. Faloutsos

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Some (power) laws
 - The 'no good cuts' shock
 - A possible explanation: fractals
 - [Part#2: Cascade analysis]
 - Conclusions

www.cs.cmu.edu/~christos/TALKS/13-10-WIN/

Solution# S.1

• Power law in the degree distribution [SIGCOMM99]

internet domains

(c) 2013, C. Faloutsos

Solution# S.2: Eigen Exponent E

WIN workshop, NYU

(c) 2013, C. Faloutsos

Triangle Law: #S.3 [Tsourakakis ICDM 2008]

MORE Graph Patterns

		Unweighted	Weighted	
	Static	 L01. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] L02. Triangle Power Law (TPL) [Tsourakakis '08] L03. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02] 	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]	
	Dynamic	L05. Densification Power Law (DPL) [Leskovec et al. `05] L06. Small and shrinking diameter [Albert and Barabási `99, Leskovec et al. `05] L07. Constant size 2^{nd} and 3^{rd} connected components [McGlohon et al. `08] L08. Principal Eigenvalue Power Law (λ_1 PL) [Akoglu et al. `08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonja `98, Gribble et al. `98, Crovella and	L11. Weight Power Law (WPL) [McGlohon et al. `08]	
R	TG:	A Recursive Realistic Graph Generate	or using Random	
<i>Typing</i> Leman Akoglu and Christos Faloutsos. <i>PKDD</i> '09.				

MORE Graph Patterns Unweighted Weighted Power-law degree distribution [Faloutsos et al. `99, **5.** Snapshot Power Law Static Kleipberg et al. '99, Chakrabarti et al. '04, Newman '04] (SPL) [McGlohon et al. Triangle Power Law (TPL) [Tsourakakis `08] `081 Eigenvalue Power Law (EPL) [Siganos et al. `03] L04. Community structure [Flake et al. `02, Girvan and Newman `02] Densification Power Law (DPL) [Leskovec et al. `05] Weight Power Law Dynamic LO6. Small and shrinking diameter [Albert and Barabási (WPL) [McGlohon et al. `99, Leskovec et al. `05] `081 **L07.** Constant size 2nd and 3rd connected components [Mc/lohon et al. `08] S. Principal Eigenvalue Power Law (λ_1 PL) [Akoglu et al. `08] L09. Bursty/self-similar edge/weight additions [Gomez and Santonia '98. Gribble et al. '98. Crovella and RTG: A Recursive Realistic Graph Generator using Random

Typing Leman Akoglu and Christos Faloutsos. PKDD'09.

Carnegie Mellon

MORE Graph Patterns

	Unweighted	Weighted
Static	L01. Power-law degree distribution [Faloutsos et al. '99, Kleinberg et al. '99, Chakrabarti et al. '04, Newman '04] L02. Triangle Power Law (TPL) [Tsourakakis '08] L03. Eigenvalue Power Law (EPL) [Siganos et al. '03] L04. Community structure [Flake et al. '02, Girvan and Newman '02]	L10. Snapshot Power Law (SPL) [McGlohon et al. `08]
Dynamic	$ \begin{array}{l} \textbf{L05. Densification Power Law (DPL) [Leskovec et al. '05] \\ \textbf{L06. Small and shrinking diameter [Albert and Barabási '99]. Leskovec et al. '05] \\ \textbf{L07. Constant size 2nd and 3rd connected components [McGlohon et al. '08] \\ \textbf{L08. Principal Eigenvalue Power Law (λ_1PL) [Akoglu et al. '08] \\ \textbf{L09. Bursty/self-similar edge/weight additions [Gomez and Santonja'98, Gribble et al. '08] \\ \textbf{Bestavros '99, McGlohon et al. '08] \\ \end{array} $	L11. Weight Power Law (WPL) [McGlohon et al. `08]

 Mary McGlohon, Leman Akoglu, Christos
 Faloutsos. Statistical Properties of Social
 Networks. in "Social Network Data Analytics" (Ed.: Charu Aggarwal)

 Deepayan Chakrabarti and Christos Faloutsos, <u>Graph Mining: Laws, Tools, and Case Studies</u> Oct.
 2012, Morgan Claypool.

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Some (power) laws
 - The 'no good cuts' shock
 - A possible explanation: fractals
- Part#2: Cascade analysis
- Conclusions

www.cs.cmu.edu/~christos/TALKS/13-10-WIN/

Background: Graph cut problem

- Given a graph, and k
- Break it into k (disjoint) communities

Graph cut problem

- Given a graph, and k
- Break it into k (disjoint) communities
- (assume: block diagonal = 'cavemen' graph)

Many algo's for graph partitioning

• METIS [Karypis, Kumar +]

- 2nd eigenvector of Laplacian
- Modularity-based [Girwan+Newman]
- Max flow [Flake+]

Strange behavior of min cuts

- Subtle details: next
 - Preliminaries: min-cut plots of 'usual' graphs

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 Workshop on Link Analysis, Counter-terrorism and Privacy

Statistical Properties of Community Structure in Large Social and Information Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney. WWW 2008.

• Do min-cuts recursively.

N nodes

WIN workshop, NYU

(c) 2013, C. Faloutsos

• Do min-cuts recursively.

(c) 2013, C. Faloutsos

• Do min-cuts recursively.

Experiments

- Datasets:
 - Google Web Graph: 916,428 nodes and 5,105,039 edges
 - Lucent Router Graph: Undirected graph of network routers from <u>www.isi.edu/scan/mercator/maps.html</u>; 112,969 nodes and 181,639 edges
 - User → Website Clickstream Graph: 222,704
 nodes and 952,580 edges

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti, Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 Workshop on Link Analysis, Counter-terrorism and Privacy

• What does it look like for a real-world graph?

log (# edges)

• Used the METIS algorithm [Karypis, Kumar,

Experiments

- Google Web graph
- Values along the yaxis are averaged
- "lip" for large # edges

• Slope of -0.4, corresponds to a 2.5dimensional grid!

log (# edges)

• Used the METIS algorithm [Karypis, Kumar,

Experiments

- Google Web graph
- Values along the yaxis are averaged
- "lip" for large # edges

• Slope of -0.4, corresponds to a 2.5dimensional grid!

Experiments

• Same results for other graphs too...

Lucent Router graph

Clickstream graph

(c) 2013, C. Faloutsos

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs
 - Some (power) laws
 - The 'no good cuts' shock
 - A possible explanation: fractals
- Part#2: Cascade analysis
- Conclusions

www.cs.cmu.edu/~christos/TALKS/13-10-WIN/

2 Questions, one answer

- Q1: why so many power laws
- Q2: why no 'good cuts'?

2 Questions, one answer

- Q1: why so many power laws
- Q2: why no 'good cuts'?
- A: Self-similarity = fractals = 'RMAT' ~
 'Kronecker graphs'

Carnegie Mellon

20'' intro to fractals

- Remove the middle triangle; repeat
- -> Sierpinski triangle
- (Bonus question dimensionality?
 - ->1 (inf. perimeter $-(4/3)^{\infty}$)
 - -<2 (zero area $-(3/4)^{\infty}$)

(c) 2013, C. Faloutsos

ierpinski.out

Self-similarity -> no char. scale
-> power laws, eg:
2x the radius,
3x the #neighbors nn(r)
 nn(r) = C r log3/log2

Self-similarity -> no char. scale
-> power laws, eg:
2x the radius,
3x the #neighbors nn(r)
 nn(r) = C r log3/log2

Self-similarity -> no char. scale -> power laws, eg: 2x the radius, 3x the #neighbors nn = C r ^{log3/log2}

1 0.9 0.8 0.7 0.6 0.5 0.4 0.2 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

WIN workshop, NYU

2x the radius, 4x neighbors nn = C r \log^{4/\log^2} = C r ²

WIN workshop, NYU

(c) 2013, C. Faloutsos

33

How does self-similarity help in graphs? • A: RMAT/Kronecker generators

- With self-similarity, we get all power-laws, automatically,
- And small/shrinking diameter
- And `no good cuts'

R-MAT: A Recursive Model for Graph Mining, by D. Chakrabarti, Y. Zhan and C. Faloutsos, SDM 2004, Orlando, Florida, USA

Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication, by J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, in PKDD 2005, Porto, Portugal

Graph gen.: Problem dfn

- Given a growing graph with count of nodes N_l , N_2 , ...
- Generate a realistic sequence of graphs that will obey all the patterns
 - Static Patterns
 - S1 Power Law Degree Distribution
 - S2 Power Law eigenvalue and eigenvector distribution Small Diameter
 - Dynamic Patterns
 - T2 Growth Power Law (2x nodes; 3x edges)
 - T1 Shrinking/Stabilizing Diameters

(c) 2013, C. Faloutsos

Adjacency matrix

Intermediate stage

 G_1

Adjacency matrix

Intermediate stage

 G_1

Adjacency matrix

 $\begin{array}{c|c} G_1 & G_1 & 0 \\ \hline G_1 & G_1 & G_1 \\ \hline 0 & G_1 & G_1 \end{array}$

 $G_2 = G_1 \otimes G_1$

Adjacency matrix

• Continuing multiplying with G_1 we obtain G_4 and so on ...

• Continuing multiplying with G_1 we obtain G_4 and so on ...

• Continuing multiplying with G_1 we obtain G_4 and so on ...

• Continuing multiplying with G_1 we obtain G_4 and so on ...

Holes within holes; Communities within communities

G₄ adjacency matrix (c) 2013, C. Faloutsos

Problem Definition

- Given a growing graph with nodes N_1 , N_2 , ...
- Generate a realistic sequence of graphs that will obey all the patterns
 - Static Patterns
 - ✓ Power Law Degree Distribution
 - ✓ Power Law eigenvalue and eigenvector distribution
 - ✓ Small Diameter
 - Dynamic Patterns
 - ✓ Growth Power Law
 - ✓ Shrinking/Stabilizing Diameters
- First generator for which we can **prove** all these properties

Impact: Graph500

- Based on RMAT (= 2x2 Kronecker)
- Standard for graph benchmarks
- <u>http://www.graph500.org/</u>
- Competitions 2x year, with all major entities: LLNL, Argonne, ITC-U. Tokyo, Riken, ORNL, Sandia, PSC, ...

To iterate is human, to recurse is devine

R-MAT: A Recursive Model for Graph Mining, by D. Chakrabarti, Y. Zhan and C. Faloutsos, SDM 2004, Orlando, Florida, USA

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- Q1: Why so many power laws? A: real graphs ->
- Q2: Why no 'good cuts'?
- Part#2: Cascade analysis

self similar -> power laws

• Conclusions

www.cs.cmu.edu/~christos/TALKS/13-10-WIN/

Kronecker Product – a Graph

• Continuing multiplying with G_1 we obtain G_4 and so on ...

Kronecker Product – a Graph

• Continuing multiplying with G_1 we obtain G_4 and so on ...

Communities within communities within communities ...

How many Communities? 3? 9? 27?

G₄ adjacency matrix (c) 2013, C. Faloutsos

WIN workshop, NYU

47

Kronecker Product – a Graph

• Continuing multiplying with G_1 we obtain G_4 and so on ...

Communities within communities within communities ...

How many **Communities?** 3? 9? 27? A: one – but not a typical, block-like community... 48

WIN workshop, NYU

G₄ adjacency matrix (c) 2013, C. Faloutsos

(c) 2013, C. Faloutsos

Wrong questions to ask!

WIN workshop, NYU

(c) 2013, C. Faloutsos

Roadmap

- Introduction Motivation
- Part#1: Patterns in graphs

- Q1: The 'no good cuts' shock
- Q2: Why no 'good cuts'?
- What next?
 - Conclusions

www.cs.cmu.edu/~christos/TALKS/13-10-WIN/

Challenge #1: 'Connectome' – brain wiring

- Which neurons get activated by 'tomato'
- How wiring evolves
- Modeling epilepsy

Tom MitchellGeorge KarypisN. SidiropoulosV. Papalexakis

`glass' `tomato' `bell'

Challenge#2: Time evolving networks / tensors

- Periodicities? Burstiness?
- What is 'typical' behavior of a node, over time
- Heterogeneous graphs (= nodes w/ attributes)

(c) 2013, C. Faloutsos

Summary

- *many* patterns in real graphs
 - Power-laws everywhere
 - 'no good cuts'
- Self-similarity (RMAT/Kronecker): good model

Carnegie Mellon

Thanks

Disclaimer: All opinions are mine; not necessarily reflecting the opinions of the funding agencies

Thanks to: NSF IIS-0705359, IIS-0534205, CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, Google, INTEL, HP, iLab

Project info: PEGASUS

www.cs.cmu.edu/~pegasus

Results on large graphs: with Pegasus + hadoop + M45Apache license Code, papers, manual, video

Prof. U Kang Prof. Polo Chau

WIN workshop, NYU

(c) 2013, C. Faloutsos

Carnegie Mellon

Polo

Akoglu, Leman

McGlohon, Mary

Prakash, Aditya

Papalexakis, Vagelis

Tong, Hanghang

WIN workshop, NYU

(c) 2013, C. Faloutsos

57

TAKE HOME MESSAGE:

Cross-disciplinarity

www.cs.cmu.edu/~christos/TALKS/13-10-WIN/