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Thank you! 
•  Foster Provost 
•  Sinan Aral 
•  Arun Sundararajan 

•  Shirley Lau 
•  Sara Gorecki 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

>$10B revenue 

>0.5B users 

WIN workshop, NYU 



CMU SCS 

(c) 2013, C. Faloutsos 4 

Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Some (power) laws 
– The 'no good cuts' shock 
– A possible explanation: fractals 

•  [Part#2: Cascade analysis] 
•  Conclusions 

WIN workshop, NYU www.cs.cmu.edu/~christos/TALKS/13-10-WIN/ 
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Solution# S.1 

•  Power law in the degree distribution 
[SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

WIN workshop, NYU 
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Solution# S.2: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency 
matrix 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

WIN workshop, NYU 

A x = λ x 



CMU SCS 

(c) 2013, C. Faloutsos 7 

Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

WIN workshop, NYU 
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MORE Graph Patterns 
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RTG: A Recursive Realistic Graph Generator using Random 
Typing Leman Akoglu and Christos Faloutsos. PKDD’09.  
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MORE Graph Patterns 
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RTG: A Recursive Realistic Graph Generator using Random 
Typing Leman Akoglu and Christos Faloutsos. PKDD’09.  

✔

✔
✔
✔

✔✔

✔
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MORE Graph Patterns 
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•  Mary McGlohon, Leman Akoglu, Christos 
Faloutsos. Statistical Properties of Social 
Networks. in "Social Network Data Analytics” (Ed.: 
Charu Aggarwal) 

•  Deepayan Chakrabarti and Christos Faloutsos, 
Graph Mining: Laws, Tools, and Case Studies Oct. 
2012, Morgan Claypool.  
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Some (power) laws 
– The 'no good cuts' shock 
– A possible explanation: fractals 

•  Part#2: Cascade analysis 
•  Conclusions 

WIN workshop, NYU www.cs.cmu.edu/~christos/TALKS/13-10-WIN/ 
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Background: Graph cut problem 

•  Given a graph, and k 
•  Break it into k (disjoint) communities 
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Graph cut problem 

•  Given a graph, and k 
•  Break it into k (disjoint) communities 
•  (assume: block diagonal = ‘cavemen’ graph) 

k = 2 
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Many algo’s for graph partitioning 
•  METIS [Karypis, Kumar +] 
•  2nd eigenvector of Laplacian 
•  Modularity-based [Girwan+Newman] 
•  Max flow [Flake+] 
•  … 
•  … 
•  … 

WIN workshop, NYU (c) 2013, C. Faloutsos 14 
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Strange behavior of min cuts 

•  Subtle details: next 
– Preliminaries: min-cut plots of ‘usual’ graphs 

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,  
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 
Workshop on Link Analysis, Counter-terrorism and Privacy 

Statistical Properties of Community Structure in Large Social and 
Information Networks, J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney.  
WWW 2008.  
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“Min-cut” plot 
•  Do min-cuts recursively. 

log (# edges) 

log (mincut-size / #edges) 

N nodes 

Mincut size 
= sqrt(N) 
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“Min-cut” plot 
•  Do min-cuts recursively. 

log (# edges) 

log (mincut-size / #edges) 

N nodes 

New min-cut 
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“Min-cut” plot 
•  Do min-cuts recursively. 

log (# edges) 

log (mincut-size / #edges) 

N nodes 

New min-cut 

Slope = -0.5 

Better 
cut 



CMU SCS 

WIN workshop, NYU (c) 2013, C. Faloutsos 19 

“Min-cut” plot 

log (# edges) 

log (mincut-size / #edges) 

Slope = -1/d 

For a d-dimensional 
grid, the slope is -1/d 

log (# edges) 

log (mincut-size / #edges) 

For a random graph 

(and clique), 

 the slope is 0 
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Experiments 
•  Datasets: 

–  Google Web Graph: 916,428 nodes and 
5,105,039 edges 

–  Lucent Router Graph: Undirected graph of 
network routers from 
www.isi.edu/scan/mercator/maps.html; 112,969 
nodes and 181,639 edges 

–  User  Website Clickstream Graph: 222,704 
nodes and 952,580 edges 

NetMine: New Mining Tools for Large Graphs, by D. Chakrabarti,  
Y. Zhan, D. Blandford, C. Faloutsos and G. Blelloch, in the SDM 2004 
Workshop on Link Analysis, Counter-terrorism and Privacy 
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“Min-cut” plot 
•  What does it look like for a real-world 

graph? 

log (# edges) 

log (mincut-size / #edges) 

? 
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Experiments 
•  Used the METIS algorithm [Karypis, Kumar, 

1995] 

-9-8-7-6-5-4-3-2-100510152025log(mincut/edges)log(edges)google-averaged"Lip"

log (# edges) 
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•  Google Web graph 

•  Values along the y-
axis are averaged 

•  “lip” for large # edges 

•  Slope of -0.4, 
corresponds to a 2.5-
dimensional grid! 

Slope~ -0.4 

log (# edges) 

log (mincut-size / #edges) 
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Experiments 
•  Used the METIS algorithm [Karypis, Kumar, 

1995] 
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•  Google Web graph 

•  Values along the y-
axis are averaged 

•  “lip” for large # edges 

•  Slope of -0.4, 
corresponds to a 2.5-
dimensional grid! 

Slope~ -0.4 

log (# edges) 

log (mincut-size / #edges) 

Better 
cut 
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Experiments 
•  Same results for other graphs too… 

-8-7-6-5-4-3-2-10024681012141618log(mincut/edges)log(edges)lucent-averaged

-4.5-4-3.5-3-2.5-2-1.5-1-0.5002468101214161820log(mincut/edges)log(edges)clickstream-averaged

log (# edges) log (# edges) 

lo
g 

(m
in

cu
t-s

iz
e 

/ #
ed

ge
s)

 

lo
g 

(m
in

cu
t-s

iz
e 

/ #
ed

ge
s)

 

Lucent Router graph Clickstream graph 

Slope~ -0.57 Slope~ -0.45 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– Some (power) laws 
– The 'no good cuts' shock 
– A possible explanation: fractals 

•  Part#2: Cascade analysis 
•  Conclusions 

WIN workshop, NYU www.cs.cmu.edu/~christos/TALKS/13-10-WIN/ 
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2 Questions, one answer 
•  Q1: why so many power laws 
•  Q2: why no ‘good cuts’? 

WIN workshop, NYU (c) 2013, C. Faloutsos 26 
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2 Questions, one answer 
•  Q1: why so many power laws 
•  Q2: why no ‘good cuts’? 
•  A: Self-similarity =  fractals = ‘RMAT’ ~ 

‘Kronecker graphs’ 

WIN workshop, NYU (c) 2013, C. Faloutsos 27 

possible 
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20’’ intro to fractals 
•  Remove the middle triangle; repeat 
•  -> Sierpinski triangle 
•  (Bonus question - dimensionality? 

– >1 (inf. perimeter – (4/3)∞ ) 
– <2 (zero area – (3/4) ∞ ) 

WIN workshop, NYU (c) 2013, C. Faloutsos 28 

… 
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20’’ intro to fractals 

WIN workshop, NYU (c) 2013, C. Faloutsos 29 

Self-similarity -> no char. scale 
-> power laws, eg: 
2x the radius,  
3x the #neighbors nn(r) 
      nn(r) = C r log3/log2 
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20’’ intro to fractals 
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Self-similarity -> no char. scale 
-> power laws, eg: 
2x the radius,  
3x the #neighbors nn(r) 
      nn(r) = C r log3/log2 
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20’’ intro to fractals 
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Self-similarity -> no char. scale 
-> power laws, eg: 
2x the radius,  
3x the #neighbors 
      nn = C r log3/log2 

2x the radius, 
4x neighbors 

nn = C r log4/log2 = C r 2  
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20’’ intro to fractals 
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Self-similarity -> no char. scale 
-> power laws, eg: 
2x the radius,  
3x the #neighbors 
      nn = C r log3/log2 

2x the radius, 
4x neighbors 

nn = C r log4/log2 = C r 2  

Fractal dim. 

=1.58 
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20’’ intro to fractals 
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Self-similarity -> no char. scale 
-> power laws, eg: 
2x the radius,  
3x the #neighbors 
      nn = C r log3/log2 

2x the radius, 
4x neighbors 

nn = C r log4/log2 = C r 2  

Fractal dim. 
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How does self-similarity help in 

graphs? 
•  A: RMAT/Kronecker generators 

– With self-similarity, we get all power-laws, 
automatically, 

– And small/shrinking diameter 
– And `no good cuts’ 

WIN workshop, NYU (c) 2013, C. Faloutsos 34 

R-MAT: A Recursive Model for Graph Mining,  
by D. Chakrabarti, Y. Zhan and C. Faloutsos,  
SDM 2004, Orlando, Florida, USA 
Realistic, Mathematically Tractable Graph Generation  
and Evolution, Using Kronecker Multiplication, 
by J. Leskovec, D. Chakrabarti, J. Kleinberg,  
and C. Faloutsos, in PKDD 2005, Porto, Portugal  
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Graph gen.: Problem dfn 
•  Given a growing graph with count of nodes N1, 

N2, … 
•  Generate a realistic sequence of graphs that will 

obey all the patterns  
–  Static Patterns 

 S1 Power Law Degree Distribution 
 S2 Power Law eigenvalue and eigenvector distribution 
      Small Diameter 

–  Dynamic Patterns 
 T2 Growth Power Law (2x nodes; 3x edges) 
 T1 Shrinking/Stabilizing Diameters 
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Kronecker Graphs 

Intermediate stage 

Adjacency matrix 
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Kronecker Graphs 

Intermediate stage 

Adjacency matrix 



CMU SCS 

WIN workshop, NYU (c) 2013, C. Faloutsos 38 Adjacency matrix 

Kronecker Graphs 

Intermediate stage 

Adjacency matrix 
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Kronecker Graphs 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 
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Kronecker Graphs 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 
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Kronecker Graphs 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 
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Kronecker Graphs 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 

Holes within holes; 
Communities  

within communities 
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Problem Definition 
•  Given a growing graph with nodes N1, N2, … 
•  Generate a realistic sequence of graphs that will obey all 

the patterns  
–  Static Patterns 

 Power Law Degree Distribution 
 Power Law eigenvalue and eigenvector distribution 
 Small Diameter 

–  Dynamic Patterns 
 Growth Power Law 
 Shrinking/Stabilizing Diameters 

•  First generator for which we can prove all these 
properties 

 
 
 

 
 
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Impact: Graph500 
•  Based on RMAT (= 2x2 Kronecker) 
•  Standard for graph benchmarks 
•  http://www.graph500.org/ 
•  Competitions 2x year, with all major 

entities: LLNL, Argonne, ITC-U. Tokyo, 
Riken, ORNL, Sandia, PSC, … 

WIN workshop, NYU (c) 2013, C. Faloutsos 44 

R-MAT: A Recursive Model for Graph Mining,  
by D. Chakrabarti, Y. Zhan and C. Faloutsos,  
SDM 2004, Orlando, Florida, USA 

To iterate is human, to recurse is devine 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– … 
– Q1: Why so many power laws? 
– Q2: Why no ‘good cuts’? 

•  Part#2: Cascade analysis 
•  Conclusions 

WIN workshop, NYU 

A: real graphs ->  
    self similar -> 
    power laws 

www.cs.cmu.edu/~christos/TALKS/13-10-WIN/ 
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Kronecker Product – a Graph 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 

REMINDER 
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Kronecker Product – a Graph 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 

REMINDER 

Communities within  
communities within  
communities … 

How many  
Communities? 
3? 
9? 
27? 
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Kronecker Product – a Graph 
•  Continuing multiplying with G1 we obtain G4 and 

so on … 

G4 adjacency matrix 

REMINDER 

Communities within  
communities within  
communities … 

How many  
Communities? 
3? 
9? 
27? 

A: one – but 
not a typical,  
block-like 
community… 
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Communities? (Gaussian) 
Clusters? 

Piece-wise  
flat parts? 

age 

# songs 
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Wrong questions to ask! 

age 

# songs 
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Roadmap 

•  Introduction – Motivation 
•  Part#1: Patterns in graphs 

– … 
– Q1: The 'no good cuts' shock 
– Q2: Why no ‘good cuts’? 

•  What next? 
•  Conclusions 

WIN workshop, NYU www.cs.cmu.edu/~christos/TALKS/13-10-WIN/ 
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Challenge #1: ‘Connectome’ – 

brain wiring 
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•  Which neurons get activated by ‘tomato’ 
•  How wiring evolves 
•  Modeling epilepsy 

N. Sidiropoulos 
George Karypis 

V. Papalexakis 

Tom Mitchell 

`glass’ 
`tomato’ 
`bell’ 
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Challenge#2: Time evolving 

networks / tensors 
•  Periodicities? Burstiness? 
•  What is ‘typical’ behavior of a node, over time 
•  Heterogeneous graphs (= nodes w/ attributes) 

WIN workshop, NYU (c) 2013, C. Faloutsos 53 

… 
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Summary 
•  *many* patterns in real graphs 

– Power-laws everywhere 
–  ‘no good cuts’ 

•  Self-similarity (RMAT/Kronecker): good 
model 

WIN workshop, NYU (c) 2013, C. Faloutsos 54 
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Thanks 

WIN workshop, NYU 

Thanks to: NSF IIS-0705359, IIS-0534205,  
CTA-INARC; Yahoo (M45), LLNL, IBM, SPRINT, 
Google, INTEL, HP, iLab 

Disclaimer: All opinions are mine; not necessarily reflecting 
the opinions of the funding agencies 
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Project info: PEGASUS 

WIN workshop, NYU 

www.cs.cmu.edu/~pegasus 
Results on large graphs: with Pegasus + 

hadoop + M45 
Apache license 
Code, papers, manual, video 

Prof. U Kang Prof. Polo Chau 
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Cast 

Akoglu,  
Leman 

Chau,  
Polo 

Kang, U 

McGlohon,  
Mary 

Tong,  
Hanghang 

Prakash, 
Aditya 

WIN workshop, NYU 

Koutra, 
Danai 

Beutel, 
Alex 

Papalexakis, 
Vagelis 
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TAKE HOME MESSAGE: 

Cross-disciplinarity 
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