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Thank you! 

•  Nikos Sidiropoulos 

•  Kuo-Chu Chang 

•  Zhi (Gerry) Tian 
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Roadmap 

•  Introduction – Motivation 
– Why ‘big data’ 
– Why (big) graphs? 

•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Conclusions 

NSF, 3/2013 
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Why ‘big data’ 
•  Why? 
•  What is the problem definition? 

NSF, 3/2013 C. Faloutsos (CMU) 4 
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Main message: 

Big data: often > experts 
•  ‘Super Crunchers’ Why Thinking-By-Numbers is the 

New Way To Be Smart by Ian Ayres, 2008 

•  Google won the machine translation 
competition 2005 

•  http://www.itl.nist.gov/iad/mig//tests/mt/2005/doc/
mt05eval_official_results_release_20050801_v3.html 

NSF, 3/2013 C. Faloutsos (CMU) 5 
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Problem definition – big picture 

NSF, 3/2013 C. Faloutsos (CMU) 6 

Tera/Peta-byte  
data 

Analytics Insights, 
outliers 
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Problem definition – big picture 
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Tera/Peta-byte  
data 

Analytics Insights, 
outliers 

Main emphasis in this talk 
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Roadmap 

•  Introduction – Motivation 
– Why ‘big data’ 
– Why (big) graphs? 

•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Problem#3: Scalability 
•  Conclusions 

NSF, 3/2013 
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Graphs - why should we care? 

Internet Map 
[lumeta.com] 

Food Web 
[Martinez ’91] 

>$10B revenue 

>0.5B users 

NSF, 3/2013 
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Graphs - why should we care? 
•  IR: bi-partite graphs (doc-terms) 

•  web: hyper-text graph 

•  ... and more: 

D1 

DN 

T1 

TM 

... ... 

NSF, 3/2013 
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Graphs - why should we care? 
•  web-log (‘blog’) news propagation 
•  computer network security: email/IP traffic and 

anomaly detection 
•  ‘viral’ marketing 
•  Supplier-supply business chains (-> instabilities) 
•  .... 
•  Subject-verb-object -> graph 
•  Many-to-many db relationship -> graph 

NSF, 3/2013 
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Outline 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs 
– Time evolving graphs 

•  Problem#2: Tools 
•  Conclusions 

NSF, 3/2013 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

NSF, 3/2013 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

NSF, 3/2013 
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Problem #1 - network and graph 
mining 

•  What does the Internet look like? 
•  What does FaceBook look like? 

•  What is ‘normal’/‘abnormal’? 
•  which patterns/laws hold? 

–  To spot anomalies (rarities), we have to 
discover patterns 

–  Large datasets reveal patterns/anomalies 
that may be invisible otherwise… 

NSF, 3/2013 
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Graph mining 
•  Are real graphs random? 

NSF, 3/2013 
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Laws and patterns 
•  Are real graphs random? 
•  A: NO!! 

– Diameter 
–  in- and out- degree distributions 
–  other (surprising) patterns 

•  So, let’s look at the data 

NSF, 3/2013 



CMU SCS 

C. Faloutsos (CMU) 18 

Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

internet domains 

att.com 

ibm.com 

NSF, 3/2013 
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Solution# S.1 
•  Power law in the degree distribution 

[SIGCOMM99] 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

NSF, 3/2013 
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Solution# S.1 
•  Q: So what? 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

NSF, 3/2013 
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Solution# S.1 
•  Q: So what? 
•  A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

NSF, 3/2013 

~0.8PB -> 
a data center(!) 
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Solution# S.1 
•  Q: So what? 
•  A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2 

log(rank) 

log(degree) 

-0.82 

internet domains 

att.com 

ibm.com 

NSF, 3/2013 

~0.8PB -> 
a data center(!) 
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Solution# S.2: Eigen Exponent E 

•  A2: power law in the eigenvalues of the adjacency 
matrix 

E = -0.48 

Exponent = slope 

Eigenvalue 

Rank of decreasing eigenvalue 

May 2001 

NSF, 3/2013 
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Many more power laws 
•  # of sexual contacts 
•  Income [Pareto] –’80-20 distribution’ 
•  Duration of downloads [Bestavros+] 
•  Duration of UNIX jobs (‘mice and 

elephants’) 
•  Size of files of a user 
•  … 
•  ‘Black swans’ 
NSF, 3/2013 C. Faloutsos (CMU) 24 
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
•  degree, diameter, eigen,  
•  triangles 
•  cliques 

– Weighted graphs 
– Time evolving graphs 

•  Problem#2: Tools 
NSF, 3/2013 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles  

NSF, 3/2013 
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Solution# S.3: Triangle ‘Laws’ 

•  Real social networks have a lot of triangles 
–  Friends of friends are friends  

•  Any patterns? 

NSF, 3/2013 
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Triangle Law: #S.3  
[Tsourakakis ICDM 2008] 

SN Reuters 

Epinions X-axis: degree 
Y-axis: mean # triangles 
n friends -> ~n1.6 triangles 

NSF, 3/2013 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) – O(dmax

2) 
Q: Can we do that quickly? 
A: 

details 

NSF, 3/2013 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

But: triangles are expensive to compute 
 (3-way join; several approx. algos) – O(dmax

2) 
Q: Can we do that quickly? 
A: Yes! 

 #triangles = 1/6 Sum ( λi
3 ) 

      (and, because of skewness (S2) ,  
 we only need the top few eigenvalues! - O(E) 

details 

NSF, 3/2013 
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Triangle Law: Computations  
[Tsourakakis ICDM 2008] 

1000x+ speed-up, >90% accuracy 

details 

NSF, 3/2013 



CMU SCS 

Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

32 NSF, 3/2013 32 C. Faloutsos (CMU) 

? ? 

? 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 
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Triangle counting for large graphs? 

Anomalous nodes in Twitter(~ 3 billion edges) 
[U Kang, Brendan Meeder, +, PAKDD’11] 

35 NSF, 3/2013 35 C. Faloutsos (CMU) 
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 

– Static graphs  
– Time evolving graphs 

•  Problem#2: Tools 
•  … 

NSF, 3/2013 
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T.1 : popularity over time 

Post popularity drops-off – exponentially? 

lag: days after post 

# in links 

1 2 3 

@t 

@t + lag 

NSF, 3/2013 
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T.1 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? 

# in links 
(log) 

days after post 
(log) 

NSF, 3/2013 
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T.1 : popularity over time 

Post popularity drops-off – exponentially? 
POWER LAW! 
Exponent? -1.6  
•  close to -1.5: Barabasi’s stack model 
•  and like the zero-crossings of a random walk 

# in links 
(log) -1.6 

days after post 
(log) 

NSF, 3/2013 
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-1.5 slope 
J. G. Oliveira & A.-L. Barabási Human Dynamics: The 

Correspondence Patterns of Darwin and Einstein. 
Nature 437, 1251 (2005) . [PDF]  

Response time (log) 

Prob(RT > x) 
(log) 
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-1.5 slope 
J. G. Oliveira & A.-L. Barabási Human Dynamics: The 

Correspondence Patterns of Darwin and Einstein. 
Nature 437, 1251 (2005) . [PDF]  
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

–  (Belief Propagation) 
– Tensors 
– Spike analysis 

•  Conclusions 

NSF, 3/2013 
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GigaTensor: Scaling Tensor Analysis 
Up By 100 Times –  

Algorithms and Discoveries 

U  
Kang 

Christos 
Faloutsos 

KDD’12 

Evangelos 
Papalexakis 

Abhay 
Harpale 

NSF, 3/2013 43 C. Faloutsos (CMU) 
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Background: Tensor 

•  Tensors (=multi-dimensional arrays) are 
everywhere 
– Hyperlinks &anchor text [Kolda+,05] 

URL 1	


URL 2	


Anchor 
Text	


Java	


C++	


C#	


1
1

1

1
1

1 1

NSF, 3/2013 44 C. Faloutsos (CMU) 
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Time evolving graphs: Tensors 

callee	


caller	


date	


1
1

1

1
1

1 1

NSF, 3/2013 45 C. Faloutsos (CMU) 
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Background: Tensor 

•  Tensors (=multi-dimensional arrays) are 
everywhere 
– Sensor stream (time, location, type) 
– Predicates (subject, verb, object) in knowledge base 

“Barrack Obama is 
the president of 

U.S.” 	


“Eric Clapton plays 
guitar” 	


(26M)	


(26M)	


(48M)	


NELL (Never Ending 
Language Learner) data 

Nonzeros =144M	


NSF, 3/2013 46 C. Faloutsos (CMU) 
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Background: Tensor 

•  Tensors (=multi-dimensional arrays) are 
everywhere 
– Sensor stream (time, location, type) 
– Predicates (subject, verb, object) in knowledge base 

NSF, 3/2013 47 C. Faloutsos (CMU) IP-destination 

IP-source 

Time-stamp Anomaly  
Detection in 
Computer 
networks 
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all I learned on tensors: from 

NSF, 3/2013 C. Faloutsos (CMU) 48 

Nikos Sidiropoulos 
UMN 

Tamara Kolda, 
Sandia Labs 

(tensor toolbox) 
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Problem Definition 

•  How to decompose a billion-scale tensor? 
– Corresponds to SVD in 2D case 

NSF, 3/2013 49 C. Faloutsos (CMU) 
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Problem Definition 

•  How to decompose a billion-scale tensor? 
– Corresponds to SVD in 2D case = soft clustering 

NSF, 3/2013 50 C. Faloutsos (CMU) 
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Problem Definition 

  Q1: Dominant concepts/topics?	

  Q2: Find synonyms to a given noun phrase? 
  (and how to scale up: |data| > RAM) 

(26M)	


(26M)	


(48M)	


NELL (Never Ending 
Language Learner) data 

Nonzeros =144M	


NSF, 3/2013 51 C. Faloutsos (CMU) 
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Experiments 

•  GigaTensor solves 100x larger problem 

Number of  
nonzero 
= I / 50	


(J)	


(I)	


(K)	


GigaTensor 

Out of 
Memory 

100x 

NSF, 3/2013 52 C. Faloutsos (CMU) 
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A1: Concept Discovery 

•  Concept Discovery in Knowledge Base 

NSF, 3/2013 53 C. Faloutsos (CMU) 
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A1: Concept Discovery 

NSF, 3/2013 54 C. Faloutsos (CMU) 
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A2: Synonym Discovery 

NSF, 3/2013 55 C. Faloutsos (CMU) 
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– Belief propagation 
– Tensors 
– Spike analysis 
– Graph summarization 

•  Conclusions 

NSF, 3/2013 
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•  Meme (# of mentions in blogs) 
–  short phrases Sourced from U.S. politics in 2008 

57 
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“you can put lipstick on a pig”  

“yes we can”  

Rise and fall patterns in social media 

C. Faloutsos (CMU) NSF, 3/2013 



CMU SCS 

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

0 50 100
0

50

100

Rise and fall patterns in social media	


58 

•  Can we find a unifying model, which 
includes these patterns? 

•  four classes on YouTube [Crane et al. ’08] 
•  six   classes on Meme     [Yang et al. ’11] 

C. Faloutsos (CMU) NSF, 3/2013 
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Rise and fall patterns in social media	


59 

•  Answer: YES! 

•  We can represent all patterns by single model 
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60 

Main idea - SpikeM	

-  1. Un-informed bloggers (uninformed about rumor) 

-  2. External shock at time nb (e.g, breaking news) 

-  3. Infection (word-of-mouth) 

Time n=0	
 Time n=nb	


β	


C. Faloutsos (CMU) NSF, 3/2013 

             Infectiveness of a blog-post at age n:  

- Strength of infection (quality of news) 
- Decay function 

!

f (n)

Time n=nb+1	
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-  1. Un-informed bloggers (uninformed about rumor) 

-  2. External shock at time nb (e.g, breaking news) 

-  3. Infection (word-of-mouth) 

Time n=0	
 Time n=nb	


β	


C. Faloutsos (CMU) NSF, 3/2013 

             Infectiveness of a blog-post at age n:  

- Strength of infection (quality of news) 
- Decay function 

!

f (n)

Time n=nb+1	


f (n) = ! *n!1.5

Main idea - SpikeM	
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SpikeM - with periodicity	

•  Full equation of SpikeM  

62 

!B(n+1) = p(n+1) " U(n) " (!B(t)+ S(t)) " f (n+1# t)+!
t=nb

n

$
%

&
'
'

(

)
*
*

Periodicity	


noon 
Peak	
 3am 

Dip	


Time n	


Bloggers change their 
activity over time 

(e.g., daily, weekly, 
yearly)	


activity	


p(n)

C. Faloutsos (CMU) NSF, 3/2013 
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Details	

•  Analysis – exponential rise and power-raw fall 

63 

Lin-log	


Log-log	


 Rise-part 

    SI     -> exponential  
SpikeM -> exponential 

C. Faloutsos (CMU) NSF, 3/2013 
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Details	

•  Analysis – exponential rise and power-raw fall 

64 

Lin-log	


Log-log	


 Fall-part 

     SI      -> exponential  
SpikeM -> power law 

C. Faloutsos (CMU) NSF, 3/2013 
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Tail-part forecasts	


65 

•  SpikeM can capture tail part 

C. Faloutsos (CMU) NSF, 3/2013 
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“What-if” forecasting	


66 

e.g., given  (1) first spike, 
      (2) release date of two sequel movies  
      (3) access volume before the release date 

?	


(1) First 
spike	


(2) Release 
date	


(3) Two weeks before 
release	


C. Faloutsos (CMU) NSF, 3/2013 

?	




CMU SCS 

“What-if” forecasting	


67 

SpikeM can forecast upcoming spikes 

(1) First 
spike	


(2) Release 
date	


(3) Two weeks before 
release	


C. Faloutsos (CMU) NSF, 3/2013 
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 

– Belief Propagation 
– Tensors 
– Spike analysis 
– Graph understanding (through MDL) 

•  Conclusions 

NSF, 3/2013 
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Summarizing Graphs 

Goal: 

Main Idea: MDL + ‘syllables’ : 
 star, clique, chain, bi-partite core 

…

Koutra, Kang, Vreeken, et al, (subm.) 

?? 
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Summarizing Wiki-controversy 

top-8 stars: 
admins, bots top-1 and top-2 bipartite cores: edit wars. 

Left: warring factions (‘Kiev’ vs ‘Kyev’) 
Right: between vandals 
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Roadmap 

•  Introduction – Motivation 
•  Problem#1: Patterns in graphs 
•  Problem#2: Tools 
•  Conclusions 

NSF, 3/2013 
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OVERALL CONCLUSIONS – 
low level: 

•  Several new patterns (power laws, triangle-
laws, etc) 

•  New tools: 
–  belief propagation, gigaTensor, etc 

•  Scalability: PEGASUS / hadoop 

NSF, 3/2013 



CMU SCS 

C. Faloutsos (CMU) 73 

OVERALL CONCLUSIONS – 
high level 

•  BIG DATA: Large datasets reveal patterns/
outliers that are invisible otherwise 

NSF, 3/2013 
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ML, 
Stats., 
DSP 

Comp. 
Systems 

Theory 
& Algo. 

Biology 

Econ. 

Social 
Science 

Physics 

74 

(Graph) 
Analytics 

NSF, 3/2013 C. Faloutsos (CMU) 
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ML & 
Stats. 

Comp. 
Systems 

Theory 
& Algo. 

Biology 

Econ. 

Social 
Science 

Physics 

75 

(Graph) 
Analytics 

NSF, 3/2013 C. Faloutsos (CMU) 
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Tera/Peta-byte  
data 

Analytics Insights, 
outliers 

Big data reveal insights that would be 
invisible otherwise (even to experts) 


